
In this chapter, we’ll write code that can
extract code signing information from

distribution !le formats that malware often
abuses, such as disk images and packages. Then

we’ll turn our attention to the code signing information
of on-disk Mach-O binaries and running processes. For
each, I’ll show you how to programmatically validate the
code signing information and detect any revocations.

The behavior-based heuristics covered throughout this book are a
powerful approach to detecting malware. But the approach comes with a
downside: false positives, which occur when code incorrectly "ags something
as suspicious.

One way to reduce false positives is by examining an item’s code signing
information. Apple’s support of cryptographic code signing is unparalleled,
and as malware detectors, we can leverage it in a variety of ways, most nota-
bly to con!rm that items come from known, trusted sources and that these
items haven’t been tampered with.

3
C O D E S I G N I N G

76!!!Chapter 3

On the "ip side, we should closely scrutinize any unsigned or non-
notarized item. For example, malware is often either wholly unsigned or
signed in an ad hoc manner, meaning with a self-signed or untrusted cer-
ti!cate. While threat actors may occasionally sign their malware with fraud-
ulently obtained or stolen developer certi!cates, it’s rare for Apple to have
notarized the malware as well. Moreover, Apple is often quick to revoke the
signing certi!cate or notarization ticket when it makes a mistake.

You can !nd the majority of code snippets presented in this chapter in
the checkSignature project, available in the book’s GitHub repository.

The Importance of Code Signing in Malware Detection
As an example of why code signing is useful for malware detection, imagine
that you develop a heuristic to monitor the !lesystem for persistent items (a
reasonable approach to detecting malware, as the vast majority of Mac mal-
ware will persist on an infected host). Say your heuristic triggers when the
com.microsoft.update.agent.plist property list is persisted as a launch agent. This
property list references an application named MicrosoftAutoUpdate.app, which
the operating system will now start automatically each time the user logs in.

If your detection capabilities don’t take into account the code signing
information of the persisted item, you might generate an alert for what is
 actually a totally benign persistence event. The question, therefore, becomes:
Is this really a Microsoft updater, or is it malware masquerading as such?
By checking the application’s code signing signature, you should be able to
answer this question conclusively; if Microsoft has indeed signed the item,
you can ignore the persistence event, but if not, the item warrants a much
closer look.

Unfortunately, existing malware detection products may fail to ade-
quately take code signing information into account. For example, consider
Apple’s Malware Removal Tool (MRT), a built-in malware detection tool
found in certain versions of macOS. This platform binary is, of course,
signed by Apple proper. Yet many antivirus engines have, at one point or
another, "agged an MRT binary, com.apple.XProtectFramework.plugins.MRTv3,
as malicious because their antivirus signatures naively matched MRT’s own
embedded viral signatures (Figure#3-1).

Figure 3-1: Apple’s Malicious Removal Tool flagged as malicious

Code Signing!!!77

A rather hilarious false positive indeed. Joking aside, products that
incorrectly classify legitimate items as malware may alert the user, causing
consternation, or worse, may break legitimate functionality by quarantin-
ing the item. While third-party security products luckily can’t delete system
components such as MRT, Apple has been known to inadvertently block its
own components, disrupting system operations.1 In both cases, the detec-
tion logic could have simply checked the item’s code signing information to
see that it belonged to a trusted source.

Code signing information can do more than just reduce false positives.
For example, security tools should allow trusted or user-approved items to
perform actions that might otherwise trigger an alert. Consider the case
of a simple !rewall that generates a noti!cation whenever an untrusted
item attempts to access the network. To distinguish between trusted and
untrusted items, the !rewall can check the items’ code signing signatures.
Creating !rewall rules based on code signing information has a few bene!ts:

• If malware attempts to bypass the !rewall by modifying a legitimate
item, code signing checks will detect this tampering.

• If an approved item moves to another location on the !lesystem, the
rule will still match, as it isn’t tied to the item’s path or speci!c location.

Hopefully, these brief examples have already shown you the value of
inspecting the code signing information. For good measure, let’s list a few
other ways that code signing information can help us programmatically
detect malicious code:

Detecting notarization Recent versions of macOS require all down-
loaded software to be signed in order to run. As such, most malware is
now signed, often with an ad hoc certi!cate or fraudulent developer ID.
However, malware is rarely notarized, because notarization requires
submitting an item to Apple, which scans it, then issues a notarization
ticket if the item doesn’t appear to be malicious.2 On the few occasions
that Apple has inadvertently notarized malware, it has quickly detected
the misstep and revoked the notarization.3 These blunders are exceed-
ingly rare, and notarized items are most likely benign. Using code sign-
ing, you can quickly determine whether an item is notarized, providing
a reliable indication that Apple doesn’t consider it to be malware.
Detecting revocations If Apple has revoked an item’s code signing
certi!cate or notarization ticket, it means they have determined that
the item should no longer be distributed and run. Although revocation
sometimes happens for benign reasons, it’s often because Apple deemed
the item malicious. This chapter explains how to programmatically
detect revocations.4

Linking items to known adversaries Code signing information that
researchers have attributed to malicious adversaries, such as team
identi!ers, can later identify other malware specimens created by the
same#authors.

78!!!Chapter 3

When detecting malware, you’re generally interested in the following
code signing information for an item:

• The general status of the information, signing certi!cate, and notariza-
tion ticket. Is the item fully signed and notarized, and are the signing
certi!cate and notarization ticket still in good standing?

• The code signing authorities describing the chain of signers, as they can
provide insight into the origin and trustworthiness of the signed item.

• The item’s optional team identi!er, which speci!es the team or com-
pany that created the signed item. If the team identi!er belongs to a
reputable company, you can generally trust the signed item.

This chapter won’t cover code signing internals. Rather, it focuses on
higher-level concepts, as well as the APIs used to extract code signing
information.5

Keep in mind, however, that not everything on macOS is signed, nor is
it signed in the same way. Most notably, developers can’t sign stand-alone
scripts (one of the reasons Apple is desperately trying to deprecate them).
Nor is the macOS kernel signed per se. Instead, the boot process uses a
cryptographic hash to verify that it remains pristine.

While developers can and should sign distribution media such as disk
images, packages, and zip archives, as well as applications and stand-alone
binaries, the tools and APIs that extract the code signing information are
often speci!c to the !le type. For example, Apple’s codesign utility and code
signing services APIs work on disk images, applications, and binaries, but
not on packages, whose information you can examine with the pkgutil util-
ity or the private PackageKit APIs.

Let’s consider how to manually and programmatically extract and vali-
date code signing information, starting with distribution media.

Disk Images
Both legitimate developers and malware authors often distribute their code
as disk images, which have the .dmg extension. Most disk images containing
malware are unsigned, and if you encounter an unsigned .dmg, you should
at the very least check whether the items it contains are signed and nota-
rized. The presence of code signing information doesn’t mean a disk image
is benign, however; nothing stops malware authors from leveraging crypto-
graphic signatures. When you encounter a signed disk image, use its code
signing information to identify the creator.

Manually Verifying Signatures
You can manually verify the signature of a disk image with macOS’s built-in
codesign utility. Execute it with the --verify command line option (or -v for
short) and the path of a .dmg !le.

In the following example, codesign identi!es a validly signed disk
image containing LuLu, legitimate software from Objective-See. When it

Code Signing!!!79

encounters validly signed images, the tool won’t output anything by default;
hence, we use the -dvv option to display verbose output:

% codesign –-verify LuLu_2.6.0.dmg

% codesign --verify -dvv LuLu_2.6.0.dmg
Executable=/Users/Patrick/Downloads/LuLu_2.6.0.dmg
Identifier=LuLu
Format=disk image
...
Authority=Developer ID Application: Objective-See, LLC (VBG97UB4TA)
Authority=Developer ID Certification Authority
Authority=Apple Root CA

The verbose output shows information about the disk image, such as
its path, identi!er, and format, as well as its code signing status, including
the certi!cate authority chain. From the certi!cate authority chain, you can
see the package has been signed with an Apple Developer ID belonging to
Objective-See.

If a disk image isn’t signed, the utility will display a code object is not
signed at all message. Many software items, including most of the malware
specimens distributed via disk images, fall into this category; the authors
may have signed the software or malware but not its distribution media. For
example, take a look at the EvilQuest malware. Distributed via disk images,
it contains packages of trojanized applications:

% codesign --verify "EvilQuest/Mixed In Key 8.dmg"
EvilQuest/Mixed In Key 8.dmg: code object is not signed at all

Lastly, if Apple has revoked a disk image’s signature, codesign will dis-
play CSSMERR_TP_CERT_REVOKED. You can see an example of this in the disk
image used to distribute the CreativeUpdate malware:

% codesign --verify "CreativeUpdate/Firefox 58.0.2.dmg"
CreativeUpdate/Firefox 58.0.2.dmg: CSSMERR_TP_CERT_REVOKED

The malware’s signature is no longer valid.

Extracting Code Signing Information
Let’s programmatically extract and verify the code signing information of
a disk image using Apple’s code signing services (Sec*) APIs.6 In the chap-
ter’s checkSignature project, you’ll !nd a function named checkItem that takes
the path to an item to verify, such as a disk image, and returns a dictionary
containing the results of the veri!cation. For validly signed items, it also
returns information such as the code signing authorities, if any.

For the sake of brevity, I’ve omitted basic sanity and error checks from
most of the code snippets in this book. However, when it comes to code sign-
ing, which provides the means to make crucial decisions about the trustwor-
thiness of items, it’s imperative that the code handle errors appropriately.

80!!!Chapter 3

Without resilient error-handling mechanisms, the code might inadvertently
trust a malicious item masquerading as something benign! Thus, in this
chapter, the code snippets don’t omit such important error checks.

The !rst step to extracting the code signing information of any item is to
obtain what is referred to as a code object reference that you can then pass to
all subsequent code signing API calls. For on-disk items such as disk images,
you’ll obtain a static code object of type SecStaticCodeRef.7 For running pro-
cesses, you’ll instead obtain a dynamic code object of type SecCodeRef.8

To obtain a static code reference from a disk image, invoke the
SecStaticCodeCreateWithPath API with a path to the speci!ed disk image,
optional "ags, and an out pointer. Once the function returns, this out
pointer will contain a SecStaticCode object for use in subsequent API calls
(Listing 3-1).9 Note that you should free this pointer using CFRelease once
you’re done with it.

NSMutableDictionary* checkImage(NSString* item) {
 SecStaticCodeRef codeRef = NULL;
 NSMutableDictionary* signingInfo = [NSMutableDictionary dictionary];

 1 CFURLRef itemURL = (__bridge CFURLRef)([NSURL fileURLWithPath:item]);

 2 OSStatus status = SecStaticCodeCreateWithPath(itemURL, kSecCSDefaultFlags, &codeRef);
 3 if(errSecSuccess != status) {
 goto bail;
 }
 ...

bail:
 if(nil != codeRef) {
 CFRelease(codeRef);
 }
 return signingInfo;
}

Listing 3-1: Obtaining a static code object for a disk image

After initializing a URL object containing the path of the disk image
we’re to check 1, we invoke the SecStaticCodeCreateWithPath API 2. If this
function fails, it will return a nonzero value 3. If Sec* APIs succeed, they
return zero, which maps to the preferred errSecSuccess constant. I discuss
the error codes that the Sec* APIs may return in “Code Signing Error
Codes” on page 97. They’re also detailed in Apple’s “Code Signing Services
Result Codes” documentation.10 Also note that when we are done with the
code reference, we must release it via CFRelease.

In this and subsequent code snippets, you’ll see the use of bridging,
a mechanism to cast Objective-C objects in a toll-free manner into (and
out of) the Core Foundation objects used by Apple’s code signing APIs.
For example, in Listing 3-1, the SecStaticCodeCreateWithPath API expects a
CFURLRef as its !rst argument. After converting the path of the disk image to
an NSURL object, we bridge it to a CFURLRef using (__bridge CFURLRef). You can
read more about bridging in Apple’s “Core Foundation Design Concepts.”11

Code Signing!!!81

Once we’ve created a static code object for the disk image, we can
invoke the SecStaticCodeCheckValidity API with the just-created SecStaticCode
object to check its validity, saving the result of the call so we can return it to
the caller (Listing 3-2).

...
#define KEY_SIGNATURE_STATUS @"signatureStatus"

status = SecStaticCodeCheckValidity(codeRef, kSecCSEnforceRevocationChecks, NULL);
signingInfo[KEY_SIGNATURE_STATUS] = [NSNumber numberWithInt:status];
if(errSecSuccess != status) {
 goto bail;
}

Listing 3-2: Checking a disk image’s code signing validity

You’ll normally see this API invoked with the kSecCSDefaultFlags con-
stant, which contains a default set of "ags, but to perform certi!cate revo-
cation checks as part of the validation, you need to pass in kSecCSEnforce
RevocationChecks.

Next, we check that the invocation succeeded. If we fail to perform
this#validation, malicious code may be able to subvert code signing checks.12
If the API fails, for example, with errSecCSUnsigned, you’ll likely want to abort
the extraction of any further code signing information, which either won’t
be present (in the case of unsigned items) or won’t be trustworthy.

Once we’ve determined the validity of the disk image’s code signing
status, we can extract its code signing information via the SecCodeCopy
Signing Information API. We pass this API the SecStaticCode object, the kSecCS
Signing Information "ag, and an out pointer to a dictionary to populate with
the disk#image’s code signing details (Listing 3-3).

CFDictionaryRef signingDetails = NULL;

status = SecCodeCopySigningInformation(codeRef,
kSecCSSigningInformation, &signingDetails);
if(errSecSuccess != status) {
 goto bail;
}

Listing 3-3: Extracting code signing information

Now we can extract stored details from the dictionary, such as the cer-
ti!cate authority chain, using the key kSecCodeInfoCertificates (Listing 3-4).

#define KEY_SIGNING_AUTHORITIES @"signatureAuthorities"

signingInfo[KEY_SIGNING_AUTHORITIES] = ((__bridge NSDictionary*)signingDetails)
[(__bridge NSString*)kSecCodeInfoCertificates];

Listing 3-4: Extracting the certificate authority chain

82!!!Chapter 3

If the item has an ad hoc signature, it won’t have an entry under the
kSec Code InfoCertificates key in its code signing dictionary. Another way
to identify ad hoc signatures is to check the kSecCodeInfoFlags key, which
contains the item’s code signing "ags. For ad hoc signatures, we’ll !nd the
second least signi!cant bit (2) set in the "ag, which, after consulting Apple’s
cs_blobs.h header !le, we see maps to the constant CS_ADHOC.

It’s rare to see disk images signed in an ad hoc manner, as they don’t
require a signature to begin with, but because apps and binaries must be
signed to run, you’ll commonly see malware signed in this way. We can
extract the code signing "ags in the manner shown in Listing 3-5.

#define KEY_SIGNING_FLAGS @"flags"

signingInfo[KEY_SIGNING_FLAGS] = [(__bridge NSDictionary*)signingDetails
objectForKey:(__bridge NSString*)kSecCodeInfoFlags];

Listing 3-5: Extracting an item’s code signing flags

We could then check these extracted "ags for the value indicating an
ad hoc signature (Listing 3-6).

if([results[KEY_SIGNING_FLAGS] intValue] & CS_ADHOC) {
 // Code here will run only if item is signed in an ad hoc manner.
}

Listing 3-6: Verifying code signing flags

The dictionary stores these "ags in a number object, so we must !rst
convert them to an integer and then perform a bitwise AND operation (&)
to check for the bits speci!ed by CS_ADHOC.

When we’re !nished with the CFDictionaryRef dictionary, we must free it
via CFRelease.

Extracting Notarization Information
To extract the notarization status of the disk images, we can use the
SecRequirementCreateWithString API, which lets us create a requirement to
which an item must conform. In Listing 3-7, we create a requirement with
the string "notarized".

static SecRequirementRef requirement = NULL;
SecRequirementCreateWithString(CFSTR("notarized"), kSecCSDefaultFlags, &requirement);

Listing 3-7: Initializing a requirement reference string

The API generates an object by compiling the code requirement string
we pass to it, allowing us to use the requirement multiple times.13 If you’re
performing a one-time requirement check, you can skip the compilation
step and instead use the SecTaskValidateForRequirement API, which takes a
string-based requirement to validate as a second argument.

Now we can call the SecStaticCodeCheckValidity API, passing it the
SecStaticCode object, as well as the requirement reference (Listing 3-8).

Code Signing!!!83

if(errSecSuccess == SecStaticCodeCheckValidity(codeRef, kSecCSDefaultFlags, requirement)) {
 // Code placed here will run only if the item is notarized.
}

Listing 3-8: Checking a notarization requirement

If the API returns errSecSuccess, we know that the item conforms to
the requirement we passed in. In our case, this means the disk image is
indeed notarized. You can read more about requirements, including useful
requirement strings, in Apple’s informative “Code Signing Requirement
Language” document.14

If the notarization validation fails, we should check whether Apple has
revoked the item’s notarization ticket, even if the item is validly signed. This
nuanced case presents a huge red "ag; for an example, see the discussion of
the 3CX supply chain attack in “On-Disk Applications and Executables” on
page 93.

Although I’ve asked for one,15 Apple has not approved any method
of determining whether an item’s notarization ticket has been revoked.
However, two undocumented APIs, SecAssessmentCreate and SecAssessment Ticket
Lookup, can provide this information. In Listing 3-9, we invoke SecAssessment
Create to check whether an item that has passed other code signing checks
has had its notarization ticket revoked.

1 SecAssessmentRef secAssessment = SecAssessmentCreate(itemURL,
kSecAssessmentDefaultFlags, (__bridge CFDictionaryRef)(@{}), &error);
2 if(NULL == secAssessment) {
 if((CSSMERR_TP_CERT_REVOKED == CFErrorGetCode(error)) ||
 (errSecCSRevokedNotarization == CFErrorGetCode(error))) {
 signingInfo[KEY_SIGNING_NOTARIZED] =
 [NSNumber numberWithInteger:errSecCSRevokedNotarization];
 }
}
3 if(NULL != secAssessment) {
 CFRelease(secAssessment);
}

Listing 3-9: Checking whether a notarization ticket has been revoked

We pass the function the path to the item, such as a disk image; the
default assessment "ags; an empty but non-NULL dictionary; and an out
pointer to an error variable 1.

If Apple has revoked either the notarization ticket or the certi!cate,
the function will set an error to CSSMERR_TP_CERT_REVOKED or errSecCSRevoked
Notarization. The name of the !rst error is a bit nuanced, as it can return
items with valid certi!cates but revoked notarization tickets, which is what
we’re interested in here.

If we receive a NULL assessment and either of these error codes 2, we
know something has been revoked. Moreover, because we’ve already vali-
dated the code signing certi!cates, we know that the revocation refers to
the notarization ticket. Once we’re done with the assessment, we make sure
to free it if it’s not NULL 3.

84!!!Chapter 3

Running the Tool
Let’s compile the checkSignature project and run it against the disk images
mentioned earlier in this section:

% ./checkSignature LuLu_2.6.0.dmg
Checking: LuLu_2.6.0.dmg
Status: signed
Is notarized: no

Signing auths: (
 "<cert(0x11100a800) s: Developer ID Application: Objective-See, LLC (VBG97UB4TA)
 i: Developer ID Certification Authority>",
 "<cert(0x111808200) s: Developer ID Certification Authority i: Apple Root CA>",
 "<cert(0x111808a00) s: Apple Root CA i: Apple Root CA>"
)

As expected, the code reports that LuLu’s disk image is signed, though
it isn’t notarized. The code also extracts the chain of its code signing
authorities, which include its developer ID application and its developer ID
certi!cation authority. (When detecting malware, you may want to ignore
disk images signed via trusted developer IDs unless you’re interested in
detecting supply chain attacks.)

Now let’s run the code against the EvilQuest malware. As you’ll see, the
code matches the results from Apple’s codesign utility, indicating that the
disk image is unsigned:

% ./checkSignature "EvilQuest/Mixed In Key 8.dmg"
Checking: Mixed In Key 8.dmg
Status: unsigned

Finally, we run the code against the CreativeUpdate malware, whose
code signing certi!cate has been revoked:

% ./checkSignature "CreativeUpdate/Firefox 58.0.2.dmg"
Checking: Firefox 58.0.2.dmg
Status: revoked

Now that we can programmatically extract and validate code signing
information from disk images, let’s do the same for packages, which unfor-
tunately require a completely different approach.

Packages
You can manually verify the signature of a package (.pkg) with the built-in
pkgutil utility. Execute it with the --check-signature command line option,
followed by the path of the .pkg !le you’d like to verify. The utility should
display the result of the check in a line pre!xed with Status:

Code Signing!!!85

% pkgutil --check-signature GoogleChrome.pkg
Package "GoogleChrome.pkg":
 Status: signed by a developer certificate issued by Apple for distribution
 Notarization: trusted by the Apple notary service
 Signed with a trusted timestamp on: 05-15 20:46:50 +0000
 Certificate Chain:
 1. Developer ID Installer: Google LLC (EQHXZ8M8AV)
 Expires: 2027-02-01 22:12:15 +0000
 SHA256 Fingerprint:
 40 02 6A 12 12 38 F4 E0 3F 7B CE 86 FA 5A 22 2B DA 7A 3A 20 70 FF
 28 0D 86 AA 4E 02 56 C5 B2 B4

 2. Developer ID Certification Authority
 Expires: 2027-02-01 22:12:15 +0000
 SHA256 Fingerprint:
 7A FC 9D 01 A6 2F 03 A2 DE 96 37 93 6D 4A FE 68 09 0D 2D E1 8D 03
 F2 9C 88 CF B0 B1 BA 63 58 7F

 3. Apple Root CA
 Expires: 2035-02-09 21:40:36 +0000
 SHA256 Fingerprint:
 B0 B1 73 0E CB C7 FF 45 05 14 2C 49 F1 29 5E 6E DA 6B CA ED 7E 2C
 68 C5 BE 91 B5 A1 10 01 F0 24

The results show that pkgutil has veri!ed that the package, a Google
Chrome installer, is signed and notarized. The tool also displayed the cer-
ti!cate authority chain, which indicates that the package was signed via an
Apple Developer ID belonging to Google.

Note that you can’t use the codesign utility to check the code signature
of packages, as .pkg !les use a different mechanism for storing code sign-
ing information that codesign doesn’t understand. For example, when run
against the same package, it detects no signature:

% codesign –-verify -dvv GoogleChrome.pkg
GoogleChrome.pkg: code object is not signed at all

If a package isn’t signed, pkgutil will display a Status: no signature mes-
sage. Most malware distributed via packages, including EvilQuest, falls into
this category. These disk images contain a malicious package, and once
the disk image is mounted, we can use pkgutil to show that this package
is#unsigned:

% pkgutil --check-signature "EvilQuest/Mixed In Key 8.pkg"
Package "Mixed In Key 8.pkg":
 Status: no signature

Finally, if a package was signed but Apple has revoked its code signing
certi!cate, pkgutil will display Status: revoked signature but will still show

86!!!Chapter 3

the certi!cate chain. We !nd an example of this behavior in a package used
to distribute the KeySteal malware:

% pkgutil --check-signature KeySteal/archive.pkg
Package "archive.pkg":
 Status: revoked signature
 Signed with a trusted timestamp on: 10-18 12:58:45 +0000
 Certificate Chain:
 1. Developer ID Installer: fenghua he (32W7BZNTSV)
 Expires: 2027-02-01 22:12:15 +0000
 SHA256 Fingerprint:
 EC 7C 85 1D B0 A0 8C ED 45 31 6B 8E 9D 7D 34 0F 45 B8 4E CE 9D 9C
 97 DB 2F 63 57 C2 D9 71 0C 4E

 2. Developer ID Certification Authority
 Expires: 2027-02-01 22:12:15 +0000
 SHA256 Fingerprint:
 7A FC 9D 01 A6 2F 03 A2 DE 96 37 93 6D 4A FE 68 09 0D 2D E1 8D 03
 F2 9C 88 CF B0 B1 BA 63 58 7F

 3. Apple Root CA
 Expires: 2035-02-09 21:40:36 +0000
 SHA256 Fingerprint:
 B0 B1 73 0E CB C7 FF 45 05 14 2C 49 F1 29 5E 6E DA 6B CA ED 7E 2C
 68 C5 BE 91 B5 A1 10 01 F0 24

Apple has revoked the signature. In addition, the revoked code signing
identi!er, fenghua he (32W7BZNTSV), may help you !nd other malware
signed by the same malware author.

Reverse Engineering pkgutil
Now, you may be wondering how to programmatically check the signatures
of packages. This is a good question, as there are currently no public APIs
for verifying a package! Thanks, Cupertino.

Luckily, a quick reverse engineering session of the pkgutil binary reveals
exactly how it checks the signature of packages. To begin, we can see that
pkgutil is linked against the private PackageKit framework:

% otool -L /usr/sbin/pkgutil
/usr/sbin/pkgutil:
...
/System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/PackageKit
...

The name of this framework suggests that it likely contains relevant APIs.
Traditionally found in the /System/Library/PrivateFrameworks/ directory, the
framework lives in the shared dyld cache, a prelinked shared !le containing
commonly used libraries, on recent versions of macOS.16 Its name and
location depend on the version of macOS and the architecture of the system
but might look something like dyld_shared_cache_arm64e and /System/Volumes/
Preboot/Cryptexes/OS/System/Library/dyld/, respectively.

Code Signing!!!87

We must extract the PackageKit framework from the dyld cache before
we can reverse engineer it. A tool such as Hopper, shown in Figure#3-2, can
extract frameworks from the cache.

Figure 3-2: Extracting the PackageKit framework from the dyld cache

If you prefer to use a command line tool to extract libraries, one good
option is the dyld-shared-cache-extractor.17 After installing this tool, you can
execute it with the path of the dyld cache and an output directory, which we
specify here as /tmp/libraries:

% dyld-shared-cache-extractor /System/Volumes/Preboot/Cryptexes/OS/System/
Library/dyld/dyld_shared_cache_arm64e /tmp/libraries

Once the tool has extracted all of the libraries from the cache, you’ll
!nd the PackageKit framework at /tmp/libraries/System/Library/Private
Frameworks/PackageKit.framework.

Now we can load the framework into a disassembler to gain insight into its
APIs and internals. For example, we !nd a class named PKArchive that contains
useful methods, such as archiveWithPath: and verifyReturningError:, among
others:

@interface PKArchive : NSObject
 +(id)archiveWithPath:(id)arg1;
 +(id)_allArchiveClasses;
 -(BOOL)closeArchive;
 -(BOOL)fileExistsAtPath:(id)arg1;
 -(BOOL)verifyReturningError:(id*)arg1;
 ...
@end

88!!!Chapter 3

I won’t cover the full details of reverse engineering the PackageKit frame-
work here, but you can learn more about the process online.18 You can also
!nd the entirety of my package veri!cation source code in my What’s Your
Sign utility’s Package.h/Package.m !le.19

Accessing Framework Functions
To use the methods we’ve discovered in our checkSignature project, we’ll need
a header !le containing the private class de!nitions from the PackageKit
framework. This will allow us to invoke them directly from our code. In the
past, tools such as class-dump could easily create such header !les,20 but this
approach isn’t fully compatible with newer Apple Silicon binaries. Instead,
you can manually extract these class de!nitions from a disassembler or by
using otool. Listing 3-10 shows the extracted de!nitions.

@interface PKArchive : NSObject
 +(id)archiveWithPath:(id)arg1;
 +(id)_allArchiveClasses;
 -(BOOL)closeArchive;
 -(BOOL)fileExistsAtPath:(id)arg1;
 -(BOOL)verifyReturningError:(id*)arg1;
 ...

 @property(readonly) NSString* archiveDigest;
 @property(readonly) NSString* archivePath;
 @property(readonly) NSDate* archiveSignatureDate;
 @property(readonly) NSArray* archiveSignatures;
@end

@interface PKArchiveSignature : NSObject
{
 struct __SecTrust* _verifyTrustRef;
}

 -(struct __SecTrust*)verificationTrustRef;
 -(BOOL)verifySignedDataReturningError:(id *)arg1;
 -(BOOL)verifySignedData;
 ...

 @property(readonly) NSString* algorithmType;
 @property(readonly) NSArray* certificateRefs;
@end
...

Listing 3-10: The PackageKit framework’s extracted class and method definitions

Now we can write code to use these classes, invoking their methods to
programmatically verify packages of our choosing. We’ll do this in a function
we name checkPackage. As its only argument, it takes a path to the package to
verify and returns a dictionary containing the results of veri!cation, plus other

Code Signing!!!89

code signing information, such as the package’s code signing authorities. The
function starts by loading the required PackageKit framework (Listing 3-11).

#define PACKAGE_KIT @"/System/Library/PrivateFrameworks/PackageKit.framework" 1

NSMutableDictionary* checkPackage(NSString* package) {
 NSBundle* packageKit = [NSBundle bundleWithPath:PACKAGE_KIT]; 2
 [packageKit load];
 ...
}

Listing 3-11: Loading the PackageKit framework

First, we de!ne the path to the PackageKit framework 1. We then load
the framework with the NSBundle class’s bundleWithPath: and load methods so
that we can dynamically resolve and invoke the framework’s methods 2.

Due to its introspective nature, the Objective-C programming language
makes it easy to use private classes and invoke private methods. To access a
private class, use the NSClassFromString function. For example, Listing 3-12
shows how to dynamically obtain the class object for the PKArchive class.

Class PKArchiveCls = NSClassFromString(@"PKArchive");

Listing 3-12: Obtaining the PKArchive class object

Reverse engineering pkgutil revealed that it instantiates an archive object
(PKXARArchive) using the PKArchive class’s archiveWithPath: method, along with
the path of the package to validate. In Listing 3-13, our code does the same.

PKXARArchive* archive = [PKArchiveCls archiveWithPath:package];

Listing 3-13: Instantiating an archive object

When dealing with private classes such as the PKArchive class, note that it’s
wise to invoke the respondsToSelector: method before invoking its methods.
The respondsToSelector: method will return a Boolean value that tells you
whether you can safely invoke the method on the class or class instance.21
If you skip this step and an object doesn’t respond to a method, it will crash
your program with an unrecognized selector sent to class exception.

The following code checks to make sure the PKArchive class implements
the archiveWithPath: method (Listing 3-14).

if(YES != [PKArchiveCls respondsToSelector:@selector(archiveWithPath:)]) {
 goto bail;
}

Listing 3-14: Checking for a method

Now we’re ready to perform some basic package validation.

90!!!Chapter 3

Validating the Package
Again, we mimic pkgutil by using the PKXARArchive class’s verifyReturningError:
method (Listing 3-15).

NSError* error = nil;
if(YES != [archive verifyReturningError:&error]) {
 goto bail;
}

Listing 3-15: Performing basic package validation

Once the package has passed basic veri!cation checks, we can check its
signature, which we !nd in the archive’s archiveSignatures instance variable.
This variable is an array holding pointers to PKArchiveSignature objects.
A#signed package will have at least one signature (Listing 3-16).

1 NSArray* signatures = archive.archiveSignatures;
if(0 == signatures .count) {
 goto bail;
}

PKArchiveSignature* signature = signatures.firstObject;
2 if(YES != [signature verifySignedDataReturningError:&error]) {
 goto bail;
}

Listing 3-16: Verifying a package’s leaf signature

After ensuring that the package has at least one signature 1, we verify
the !rst, or leaf, signature, using the PKArchiveSignature class’s verifySigned
DataReturningError: method 2. Additionally, we evaluate the trust of this
 signature (Listing 3-17).

Class PKTrustCls = NSClassFromString(@"PKTrust");

struct __SecTrust* trustRef = [signature verificationTrustRef];

1 PKTrust* pkTrust = [[PKTrustCls alloc] initWithSecTrust:trustRef
usingAppleRoot:YES signatureDate:archive.archiveSignatureDate];

2 if(YES != [pkTrust evaluateTrustReturningError:&error]) {
 goto bail;
}

Listing 3-17: Evaluating the trust of a signature

We instantiate a PKTrust object with the signature 1 and then invoke
the PKTrust class’s evaluateTrustReturningError: method 2. If verification
TrustRef returns nil, we can validate the package via certi!cates by using the
PKTrust class’s initWithCertificates:usingAppleRoot:signatureDate: method. See
this chapter’s checkSignature project code for more details. If the signature
and signature trust veri!cations pass, we have a validly signed package.

Code Signing!!!91

You could also extract the signature’s certi!cates, which would allow
you to perform actions like checking the name of each signing authority.
You can access these certi!cates through the PKArchiveSignature object’s
certificateRefs instance variable, which is an array of SecCertificateRef
objects, and extract their information with the SecCertificate* APIs.

Checking Package Notarization
I’ll wrap up this section by showing how to determine whether Apple has
notarized a package. Recall that pkgutil leverages the private PackageKit
framework to validate packages. However, reverse engineering revealed that
the package notarization checks aren’t implemented in that framework with
the rest of the checks, but rather directly in the pkgutil binary.

To check the notarization status of a package, pkgutil invokes the
SecAssessmentTicketLookup API. Though this API is undocumented, we !nd
its declaration in Apple’s SecAssessment.h header !le. Listing 3-18 mimics
pkgutil’s approach. Given a validated PKArchiveSignature object from a pack-
age, it determines whether the package has been notarized.

#import <CommonCrypto/CommonDigest.h>

typedef uint64_t SecAssessmentTicketFlags;
enum {
 kSecAssessmentTicketFlagDefault = 0,
 kSecAssessmentTicketFlagForceOnlineCheck = 1 << 0,
 kSecAssessmentTicketFlagLegacyListCheck = 1 << 1,
};

Boolean SecAssessmentTicketLookup(CFDataRef hash, SecCSDigestAlgorithm
hashType, SecAssessmentTicketFlags flags, double* date, CFErrorRef* errors);

BOOL isPackageNotarized(PKArchiveSignature* signature) {
 CFErrorRef error = NULL;
 BOOL isItemNotarized = NO;
 double notarizationDate = 0;

 SecCSDigestAlgorithm hashType = kSecCodeSignatureHashSHA1;

 1 NSData* hash = [signature signedDataReturningAlgorithm:0x0];
 if(CC_SHA1_DIGEST_LENGTH == hash.length) {
 hashType = kSecCodeSignatureHashSHA1;
 } else if(CC_SHA256_DIGEST_LENGTH == hash.length) {
 hashType = kSecCodeSignatureHashSHA256;
 }

 2 if(YES == SecAssessmentTicketLookup((__bridge CFDataRef)(hash), hashType,
 kSecAssessmentTicketFlagDefault, ¬arizationDate, &error)) {
 isItemNotarized = YES;
 3 } else if(YES == SecAssessmentTicketLookup((__bridge CFDataRef)(hash),
 hashType, kSecAssessmentTicketFlagForceOnlineCheck, ¬arizationDate,
 &error)) {
 isItemNotarized = YES;

92!!!Chapter 3

 }

 return isItemNotarized;
}

Listing 3-18: A package notarization check

We declare various variables, most of which we’ll need for the
SecAssessment TicketLookup API call. We then invoke the signature’s signed
DataReturningAlgorithm: method, which returns a data object containing a
hash#1.

Next, we make the !rst call to SecAssessmentTicketLookup 2, passing it the
hash and hash type, which will be either SHA-1 or SHA-256, represented
by the kSecCodeSignatureHashSHA1 and kSecCodeSignatureHashSHA256 constants,
respectively. We also pass in the assessment "ags and an out pointer that
will receive the date of the notarization if the package is notarized. The last
argument is an optional out pointer to an error variable.

Mimicking the pkgutil binary, we !rst invoke the API with the assess-
ment "ags set to kSecAssessmentTicketFlagDefault. If this call fails to deter-
mine whether the package is notarized, we invoke the API again, this time
with the "ag set to kSecAssessmentTicketFlagForceOnlineCheck 3. You can !nd
these and other "ag values in the SecAssessment.h header !le.

If either API invocation returns a nonzero value, the package is nota-
rized, and the Apple notary service trusts it. Because we mimicked pkgutil,
however, our code doesn’t specify whether a non-notarized package has
had its notarization ticket revoked. Given an item’s code signing hash
and hash type, we could implement such a check in the manner shown in
Listing#3-19.

CFErrorRef error = NULL;

if(YES != SecAssessmentTicketLookup(hash, hashType,
kSecAssessmentTicketFlagForceOnlineCheck, NULL, &error)) {
 if(EACCES == CFErrorGetCode(error)) {
 // Code placed here will run if the item's notarization ticket has been revoked.
 }
}

Listing 3-19: Checking for revoked notarization tickets

The SecAssessmentTicketLookup API will set its error variable to the value
EACCES if the item’s notarization ticket has been revoked.22

Running the Tool
Let’s run the checkSignature tool against the packages mentioned earlier in
this chapter:

% ./checkSignature GoogleChrome.pkg
Checking: GoogleChrome.pkg

Code Signing!!!93

Status: signed
Notarized: yes
Signing authorities (
 "<cert(0x11ee0ac30) s: Developer ID Installer: Google LLC (EQHXZ8M8AV)
 i: Developer ID Certification Authority>",
 "<cert(0x11ee08360) s: Developer ID Certification Authority i: Apple Root CA>",
 "<cert(0x11ee07820) s: Apple Root CA i: Apple Root CA>"
)

% ./checkSignature "EvilQuest/Mixed In Key 8.pkg"
Checking: Mixed In Key 8.pkg

Status: unsigned

% ./checkSignature KeySteal/archive.pkg
Checking: archive.pkg

Status: certificate revoked

Signing authorities: (
 "<cert(0x151406100) s: Developer ID Installer: fenghua he (32W7BZNTSV)
 i: Developer ID Certification Authority>",
 "<cert(0x151406380) s: Developer ID Certification Authority i: Apple Root CA>",
 "<cert(0x1514082b0) s: Apple Root CA i: Apple Root CA>"
)

The output matches the results of Apple’s pkgutil. Our code accurately
identi!es the !rst package as validly signed and notarized; the second, con-
taining the EvilQuest malware, as unsigned; and the last, containing the
KeySteal malware, as revoked.

On-Disk Applications and Executables
The majority of macOS malware is distributed as applications or stand-
alone Mach-O binaries. We can extract code signing information from
an on-disk application bundle or executable binary in the same manner as
for disk images: manually, via the codesign utility, or programmatically,
via Apple’s Code Signing Services APIs. However, this case presents a few
important differences.

The !rst involves the SecStaticCodeCheckValidity API, which validates the
item’s signature. When the item isn’t a disk image, we must invoke this func-
tion with the kSecCSCheckAllArchitectures "ag (Listing 3-20).

SecCSFlags flags = kSecCSEnforceRevocationChecks;
if(NSOrderedSame != [item.pathExtension caseInsensitiveCompare:@"dmg"]) {
 flags |= kSecCSCheckAllArchitectures;
}
status = SecStaticCodeCheckValidity(staticCode, flags, NULL);
...

Listing 3-20: Checking an item’s signature

94!!!Chapter 3

This "ag handles multiarchitecture items like universal binaries, which
can include several embedded Mach-O binaries, potentially with different
code signers. For a real-world example in which attackers abused a universal
binary to bypass insuf!cient code signing checks, see CVE-2021-30773.23
This "ag value also enforces revocation checks, as it contains the value
kSecCSEnforceRevocationChecks.

Earlier in this chapter, I showed you how to check whether a speci!ed
item conforms to some requirement, such as notarization. You might want
to check additional requirements, such as whether Apple proper signed the
item (the anchor apple requirement) or whether both Apple and a third-party
developer ID have signed it (the anchor apple generic requirement). In each
of these cases, your code can invoke the SecRequirementCreateWithString
function with the requirement you wish to check and then pass this
requirement to the SecStaticCodeCheckValidity API. To take into account
universal binaries, invoke this function with a "ag value that contains
kSecCSCheckAllArchitectures.

You should also invoke the SecAssessmentCreate API to account for items
with valid signatures but revoked notarization tickets. For a real-world
example of this situation pertaining to applications, consider the 3CX supply
chain attack mentioned previously. In this attack, North Korean attackers
compromised the 3CX company network and build server, subverted the 3CX
application with malware, signed it with the 3CX code signing certi!cate, and
then tricked Apple into notarizing it. Not wanting to revoke 3CX’s code sign-
ing certi!cate, which would have blocked many other legitimate 3CX apps,
Apple merely revoked the subverted application’s notarized ticket.

Let’s run the checkSignature project on legitimate applications as well as
malware, including the 3CX sample:

% ./checkSignature /Applications/LuLu.app
Checking: LuLu.app

Status: signed
Notarized: yes
Signing authorities: : (
 "<cert(0x13b814800) s: Developer ID Application: Objective-See, LLC (VBG97UB4TA)
 i: Developer ID Certification Authority>",
 "<cert(0x13b81c800) s: Developer ID Certification Authority i: Apple Root CA>",
 "<cert(0x13b81d000) s: Apple Root CA i: Apple Root CA>"
)

% ./checkSignature WindTail/Final_Presentation.app
Checking: Final_Presentation.app

Status: certificate revoked

% ./checkSignature "SmoothOperator/3CX Desktop App.app"
Checking: 3CX Desktop App.app

Code Signing!!!95

Status: signed
Notarized: revoked

% ./checkSignature MacMa/client
Checking: client

Status: unsigned

We !rst check Objective-See’s signed and notarized LuLu application,
followed by a WindTail malware specimen with a revoked certi!cate. Next,
we test an instance of the trojanized 3CX application; our code correctly
detects its revoked notarization status. Finally, we demonstrate that the
MacMa malware is unsigned.

Running Processes
So far, we’ve examined on-disk items by obtaining static code object refer-
ences. In this section, we’ll check the code signing information of running
processes by using dynamic code object references (SecCodeRef).

When applicable, you should make use of dynamic code object references
for two reasons. The !rst is ef!ciency; the operating system will have already
validated much of the code signing information for a dynamic instance of an
item of interest to ensure conformance with runtime requirements. For us,
this means we can avoid the costly !le I/O operations associated with static
code checks and skip certain computations.

The other reason that dynamic code references are preferable to static
code references relates to possible discrepancies between an item’s on-disk
image and its in-memory one. For example, there is little stopping malware
from changing the code signing information of its on-disk item to a benign
value. (Of course, this highly anomalous behavior should itself raise a huge
red "ag.) On the other hand, a running item can’t change its dynamic code
signing information.

To check whether a running process is signed and then extract its
code signing information, we !rst must obtain a code reference via the
SecCodeCopyGuestWithAttributes API. Invoke it with the process’s ID, or prefer-
ably, with a more secure process audit token (Listing 3-21).

SecCodeRef dynamicCode = NULL;

NSData* data = [NSData dataWithBytes:token length:sizeof(audit_token_t)]; 1
NSDictionary* attributes = @{(__bridge NSString*)kSecGuestAttributeAudit:data}; 2

status = SecCodeCopyGuestWithAttributes(NULL,
(__bridge CFDictionaryRef _Nullable)(attributes), kSecCSDefaultFlags, &dynamicCode); 3
if(errSecSuccess != status) {
 goto bail;
}

Listing 3-21: Obtaining a code object reference via a process’s audit token

96!!!Chapter 3

We !rst convert the audit token into a data object 1. We need this
conversion so we can place the audit token in a dictionary, keyed by the
string kSecGuestAttributeAudit 2. We then pass this dictionary to the SecCode
CopyGuestWithAttributes API, along with an out pointer to populate with a
code object reference 3.

With a code object reference in hand, you can validate the process’s
code signing information with SecCodeCheckValidity or SecCode Check Validity
WithErrors. Recall that for on-disk items such as universal binaries, we make
use of the kSecCSCheckAllArchitectures "ag value to validate all embedded
Mach-Os; for running processes, the dynamic loader will load and execute
only one embedded Mach-O, so that "ag value is irrelevant and not needed.

It’s essential that you validate a process’s code signing information
before extracting or acting upon any of it. If you don’t, or if the validation
fails, you won’t be able to trust it. If the code signing information is valid,
you can extract it via the SecCodeCopySigningInformation function that was
already discussed.

With a code reference for a process, you can also perform other mun-
dane but important tasks in a simple and secure manner. For example, using
the SecCodeCopyPath API, you can retrieve the process’s path (Listing#3-22).

CFURLRef path = NULL;
SecCodeCopyPath(dynamicCode, kSecCSDefaultFlags, &path);

Listing 3-22: Obtaining a process’s path from a dynamic code object reference

You can also perform speci!c validations using requirements, as was
discussed for static code object references. Using dynamic code object
references, the approach is largely the same, except you’ll make use of the
SecCodeCheckValidity API to perform the validation. It is important to note
that when you are done with a dynamic code reference, you should release
it via CFRelease.

Because macOS won’t allow a process to execute if either its certi!cate
or its notarization ticket has been revoked, you don’t need to perform this
check yourself for running processes.

Detecting False Positives
At the beginning of the chapter, I noted that various antivirus engines had
incorrectly "agged components of Apple’s MRT as malware. If these engines
had taken the item’s code signing information into account, they would
have identi!ed MRT and its components as a built-in part of macOS signed
solely by Apple proper and safely ignored it.

I’ll show you how to perform such a check using the APIs introduced
in this chapter. Speci!cally, you’ll make use of the anchor apple requirement
string, which holds cryptographically true if and only if nobody but Apple
has signed an item.

Code Signing!!!97

Let’s assume we’ve obtained a static code reference to the binary
that was incorrectly "agged as malware. In Listing 3-23, we !rst compile
the requirement string and then pass it and the code reference to the
SecStaticCodeCheckValidity API.

static SecRequirementRef requirement = NULL;
SecRequirementCreateWithString(CFSTR("anchor apple"), kSecCSDefaultFlags, &requirement);

if(errSecSuccess ==
SecStaticCodeCheckValidity(staticCodeRef, kSecCSCheckAllArchitectures, requirement)) {
 // Code placed here will run only if the item is signed by Apple alone.
}

Listing 3-23: Checking the validity of an item against the anchor apple requirement

If SecStaticCodeCheckValidity returns errSecSuccess, we know that only
Apple proper has signed the item, meaning it belongs to macOS and there-
fore certainly isn’t malware.

Code Signing Error Codes
As mentioned throughout this chapter, it’s important to appropriately
handle any errors you encounter when validating an item’s cryptographic
signature. You can !nd the error codes for the code signing services APIs in
Apple’s “Code Signing Services Result Codes” developer documentation24
or in the CSCommon.h !le, found at Security.framework/Versions/A/Headers/.
These resources indicate, for example, that the error code -66992 maps to
errSecCSRevokedNotarization, signifying that the code has been revoked.

If perusing header !les isn’t your thing, consult the OSStatus website.
This website provides a simple way to map any Apple API error code to its
human-readable name.

Conclusion
Code signing allows us to determine where an item is from and whether the
item has been modi!ed. In this chapter, you delved into code signing APIs
that can verify, extract, and validate code signing information for items
such as disk images, packages, on-disk binaries, and running processes.

Understanding these APIs is imperative in the context of detecting mal-
ware, especially as heuristic-based approaches can be fraught with false posi-
tives. The information provided by code signing can drastically reduce your
detection errors. When building antimalware tools, you can use code#signing
in a myriad of ways, including identifying core operating system components
you can trust, detecting items whose certi!cates or notarization tickets have
been revoked, and authenticating clients, such as tool modules attempting to
connect to XPC interfaces (a topic covered in Chapter#11).

98!!!Chapter 3

Notes
 1. Rich Trouton, “Apple Security Update Blocks Apple Ethernet Drivers

on OS X El Capitan,” Der Flounder, February#28, 2016, https://der!ounder
.wordpress.com/2016/02/28/apple-security-update-blocks-apple-ethernet-drivers
-on-el-capitan/.

 2. “Notarizing macOS Software Before Distribution,” Apple Developer
Documentation, https://developer.apple.com/documentation/security/notarizing
_macos_software_before_distribution.

 3. Patrick Wardle, “Apple Approved Malware,” Objective-See, August#30,
2020, https://objective-see.com/blog/blog_0x4E.html.

 4. You can read more about the revocation of developer certi!cates in
Jeff Johnson, “Developer ID Certi!cate Revocation,” Lapcat Software,
October#29, 2020, https://lapcatsoftware.com/articles/revocation.html.

 5. If you’re interested in the technical details of code signing, see
Jonathan Levin, “Code Signing—Hashed Out,” NewOSXBook, April#20,
2015, http://www.newosxbook.com/articles/CodeSigning.pdf, or “macOS Code
Signing in Depth,” Apple Developer Documentation, https://developer
.apple.com/library/archive/technotes/tn2206/_index.html.

 6. “Code Signing Services,” Apple Developer Documentation, https://developer
.apple.com/documentation/security/code_signing_services.

 7. “SecStaticCodeRef,” Apple Developer Documentation, https://developer
.apple.com/documentation/security/secstaticcoderef?language=objc.

 8. “SecCodeRef,” Apple Developer Documentation, https://developer.apple
.com/documentation/security/seccoderef?language=objc.

 9. “SecStaticCodeCreateWithPath,” Apple Developer Documentation,
https://developer.apple.com/documentation/security/1396899-secstaticcodecreate
withpath.

 10. “Code Signing Services Result Codes,” Apple Developer Documentation,
https://developer.apple.com/documentation/security/1574088-code_signing
_services_result_cod.

 11. “Core Foundation Design Concepts,” Apple Developer Documentation,
https://developer.apple.com/library/archive/documentation/CoreFoundation/
Conceptual/CFDesignConcepts/Articles/tollFreeBridgedTypes.html.

 12. For a real-world example, see Ilias Morad, “CVE-2020–9854: ‘Unauthd,’ ”
Objective-See, August#1, 2020, https://objective-see.org/blog/blog_0x4D.html,
which highlighted this issue in macOS’s authd.

 13. “SecRequirementCreateWithString,” Apple Developer Documentation,
https://developer.apple.com/documentation/security/1394522-secrequirement
createwithstring.

https://derflounder.wordpress.com/2016/02/28/apple-security-update-blocks-apple-ethernet-drivers-on-el-capitan/
https://derflounder.wordpress.com/2016/02/28/apple-security-update-blocks-apple-ethernet-drivers-on-el-capitan/
https://derflounder.wordpress.com/2016/02/28/apple-security-update-blocks-apple-ethernet-drivers-on-el-capitan/
https://developer.apple.com/documentation/security/notarizing_macos_software_before_distribution
https://developer.apple.com/documentation/security/notarizing_macos_software_before_distribution
https://objective-see.com/blog/blog_0x4E.html
https://lapcatsoftware.com/articles/revocation.html
http://www.newosxbook.com/articles/CodeSigning.pdf
https://developer.apple.com/library/archive/technotes/tn2206/_index.html
https://developer.apple.com/library/archive/technotes/tn2206/_index.html
https://developer.apple.com/documentation/security/code_signing_services
https://developer.apple.com/documentation/security/code_signing_services
https://developer.apple.com/documentation/security/secstaticcoderef?language=objc
https://developer.apple.com/documentation/security/secstaticcoderef?language=objc
https://developer.apple.com/documentation/security/seccoderef?language=objc
https://developer.apple.com/documentation/security/seccoderef?language=objc
https://developer.apple.com/documentation/security/1396899-secstaticcodecreatewithpath
https://developer.apple.com/documentation/security/1396899-secstaticcodecreatewithpath
https://developer.apple.com/documentation/security/1574088-code_signing_services_result_cod
https://developer.apple.com/documentation/security/1574088-code_signing_services_result_cod
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFDesignConcepts/Articles/tollFreeBridgedTypes.html
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFDesignConcepts/Articles/tollFreeBridgedTypes.html
https://objective-see.org/blog/blog_0x4D.html
https://developer.apple.com/documentation/security/1394522-secrequirementcreatewithstring
https://developer.apple.com/documentation/security/1394522-secrequirementcreatewithstring

Code Signing!!!99

 14. “Code Signing Requirement Language,” Apple Developer Documentation,
https://developer.apple.com/library/archive/documentation/Security/Conceptual
/CodeSigningGuide/RequirementLang/RequirementLang.html.

 15. Asfdadsfasdfasdfsasdafads, “Programmatically Detected If a Notarization
Ticket Has Been Revoked,” Apple Developer Forums, June#2023, https://
developer.apple.com/forums/thread/731675.

 16. “dyld Shared Cache Info,” Apple Developer Documentation, https://
developer.apple.com/forums/thread/692383.

 17. See https://github.com/keith/dyld-shared-cache-extractor.

 18. See, for example, Patrick Wardle, “Reversing ‘pkgutil’ to Verify PKGs,”
Jamf, January#22, 2019, https://www.jamf.com/blog/reversing-pkgutil-to-verify
-pkgs/.

 19. See https://github.com/objective-see/WhatsYourSign/blob/master/WhatsYour
SignExt/FinderSync/Packages.m.

 20. Steve Nygard, “Class-dump,” http://stevenygard.com/projects/class-dump/.

 21. “respondsToSelector:,” Apple Developer Documentation, https://developer
.apple.com/documentation/objectivec/1418956-nsobject/1418583-respondsto
selector.

 22. “Notarization,” Apple Developer Documentation, https://opensource.apple
.com/source/Security/Security-59306.120.7/OSX/libsecurity_codesigning/lib/
notarization.cpp.

 23. Linus Henze, “Fugu15: The Journey to Jailbreaking iOS 15.4.1,” paper
presented at Objective by the Sea v5, Spain, October#6, 2022, https://
objectivebythesea.org/v5/talks/OBTS_v5_lHenze.pdf.

 24. “Code Signing Services Result Codes,” Apple Developer Documentation,
https://developer.apple.com/documentation/security/1574088-code_signing
_services_result_cod.

https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/RequirementLang/RequirementLang.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/RequirementLang/RequirementLang.html
https://developer.apple.com/forums/thread/731675
https://developer.apple.com/forums/thread/731675
https://developer.apple.com/forums/thread/692383
https://developer.apple.com/forums/thread/692383
https://github.com/keith/dyld-shared-cache-extractor
https://www.jamf.com/blog/reversing-pkgutil-to-verify-pkgs/
https://www.jamf.com/blog/reversing-pkgutil-to-verify-pkgs/
https://github.com/objective-see/WhatsYourSign/blob/master/WhatsYourSignExt/FinderSync/Packages.m
https://github.com/objective-see/WhatsYourSign/blob/master/WhatsYourSignExt/FinderSync/Packages.m
http://stevenygard.com/projects/class-dump/
https://developer.apple.com/documentation/objectivec/1418956-nsobject/1418583-respondstoselector
https://developer.apple.com/documentation/objectivec/1418956-nsobject/1418583-respondstoselector
https://developer.apple.com/documentation/objectivec/1418956-nsobject/1418583-respondstoselector
https://opensource.apple.com/source/Security/Security-59306.120.7/OSX/libsecurity_codesigning/lib/notarization.cpp
https://opensource.apple.com/source/Security/Security-59306.120.7/OSX/libsecurity_codesigning/lib/notarization.cpp
https://opensource.apple.com/source/Security/Security-59306.120.7/OSX/libsecurity_codesigning/lib/notarization.cpp
https://objectivebythesea.org/v5/talks/OBTS_v5_lHenze.pdf
https://objectivebythesea.org/v5/talks/OBTS_v5_lHenze.pdf
https://developer.apple.com/documentation/security/1574088-code_signing_services_result_cod
https://developer.apple.com/documentation/security/1574088-code_signing_services_result_cod

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What You’ll Find in This Book?
	Who Should Read This Book?
	The Code and Malware Specimens
	Development Enviornment
	Code Signing Requirements
	Entitlements

	Safely Analyzing Malware
	Additional Resources
	Books
	Websites

	Notes

	Part I: Data Collection
	1. Examining Processes
	Process Enumeration
	Audit Tokens
	Paths and Names
	Identifying Hidden Files and Directories
	Obtaining the Paths of Deleted Binaries
	Validating Process Names

	Process Arguments
	Process Hierarchies
	Finding the Parent
	Returning the Process Responsible for Spawning Another
	Retrieving Information with Application Services APIs

	Environment Information
	Code Signing
	Loaded Libraries
	Open Files
	proc_pidinfo
	lsof

	Other Information
	Execution State
	Execution Architecture
	Start Time
	CPU Utilization

	Conclusion
	Notes

	2. Parsing Binaries
	Universal Binaries
	Inspecting
	Parsing

	Mach-O Headers
	Load Commands
	Extracting Dependencies
	Finding Dependency Paths
	Analyzing Dependencies

	Extracting Symbols
	Detecting Packed Binaries
	Dependencies and Symbols
	Section and Segment Names
	Entropy Calculations

	Detecting Encrypted Binaries
	Conclusion
	Notes

	3. Code Signing
	The Importance of Code Signing in Malware Detection
	Disk Images
	Manually Verifying Signatures
	Extracting Code Signing Information
	Extracting Notarization Information
	Running the Tool

	Packages
	Reverse Engineering pkgutil
	Accessing Framework Functions
	Validating the Package
	Checking Package Notarization
	Running the Tool

	On-Disk Applications and Executables
	Running Processes
	Detecting False Positives
	Code Signing Error Codes
	Conclusion
	Notes

	4. Network State and Statistics
	Host-Based vs. Network-Centric Collection
	Malicious Networking Activity
	Capturing the Network State
	Retrieving Process File Descriptors
	Extracting Network Sockets
	Obtaining Socket Details
	Running the Tool

	Enumerating Network Connections
	Linking to NetworkStatistics
	Creating Network Statistic Managers
	Defining Callback Logic
	Starting Queries
	Running the Tool

	Conclusion
	Notes

	5. Persistence
	Examples of Persistent Malware
	Background Task Management
	Examining the Subsystem
	Dissecting sfltool

	Writing a Background Task Management Database Parser
	Finding the Database Path
	Deserializing Background Task Management Files
	Accessing Metadata
	Identifying Malicious Items

	Using DumpBTM in Your Own Code
	Conclusion
	Notes

	Part II: System Monitoring
	6. Log Monitoring
	Exploring Log Information
	The Unified Logging Subsystem
	Manually Querying the log Utility
	Reverse Engineering log APIs

	Streaming Log Data
	Extracting Log Object Properties
	Determining Resource Consumption

	Conclusion
	Notes

	7. Network Monitoring
	Obtaining Regular Snapshots
	DNS Monitoring
	Using the NetworkExtension Framework
	Activating a System Extension
	Enabling the Monitoring
	Writing the Extension

	Filter Data Providers
	Enabling Filtering
	Writing the Extension
	Querying the Flow
	Running the Monitor

	Conclusion
	Notes

	8. Endpoint Security
	The Endpoint Security Workflow
	Events of Interest
	Clients, Handler Blocks, and Event Handling

	Creating a Process Monitor
	Subscribing to Events
	Extracting Process Objects
	Extracting Process Information
	Stopping the Client

	File Monitoring
	Conclusion
	Notes

	9. Muting and Authorization Events
	Muting
	Mute Inversion
	Beginning Mute Inversion
	Monitoring Directory Access

	Authorization Events
	Creating a Client and Subscribing to Events
	Meeting Message Deadlines
	Checking Binary Origins
	Blocking Background Task Management Bypasses

	Building a File Protector
	Conclusion
	Notes

	Part III: Tool Development
	10. Persistence Enumerator
	Tool Design
	Command Line Options
	Plug-ins
	Persistent Item Types

	Exploring the Plug-ins
	Background Task Management
	Browser Extension
	Dynamic Library Insertion
	Dynamic Library Proxying and Hijacking

	Conclusion
	Notes

	11. Persistence Monitor
	Entitlements
	Applying for Endpoint Security Entitlements
	Registering App IDs
	Creating Provisioning Profiles
	Enabling Entitlements in Xcode

	Tool Design
	Plug-ins
	Background Task Management Events

	XPC
	Creating Listeners and Delegates
	Extracting Audit Tokens
	Extracting Code Signing Details
	Setting Client Requirements
	Enabling Remote Connections
	Exposing Methods
	Initiating Connections
	Invoking Remote Methods

	Conclusion
	Notes

	12. Mic and Webcam Monitor
	Tool Design
	Mic and Camera Enumeration
	Audio Monitoring
	Camera Monitoring
	Device Connections and Disconnections
	Responsible Process Identification

	Triggering Scripts
	Stopping
	Conclusion
	Notes

	13. DNS Monitor
	Network Extension Deployment Prerequisites
	Packaging the Extension
	Tool Design
	The App
	The Extension
	Interprocess Communication

	Building and Dumping DNS Caches
	Blocking DNS Traffic
	Classifying Endpoints
	Conclusion
	Notes

	14. Case Studies
	Shazam’s Mic Access
	DazzleSpy Detection
	Exploit Detection
	Persistence
	Network Access

	The 3CX Supply Chain Attack
	File Monitoring
	Network Monitoring
	Process Monitoring
	Capturing Self-Deletion
	Detecting Exfiltration

	Conclusion
	Notes

	Index
	Back Cover

