
In this chapter, we’ll write code that can 
extract code signing information from 

distribution !le formats that malware often 
abuses, such as disk images and packages. Then 

we’ll turn our attention to the code signing information 
of on-disk Mach-O binaries and running processes. For 
each, I’ll show you how to programmatically validate the 
code signing information and detect any revocations.

The behavior-based heuristics covered throughout this book are a 
powerful approach to detecting malware. But the approach comes with a 
downside: false positives, which occur when code incorrectly "ags something 
as suspicious.

One way to reduce false positives is by examining an item’s code signing 
information. Apple’s support of cryptographic code signing is unparalleled, 
and as malware detectors, we can leverage it in a variety of ways, most nota-
bly to con!rm that items come from known, trusted sources and that these 
items haven’t been tampered with.

3
C O D E  S I G N I N G
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On the "ip side, we should closely scrutinize any unsigned or non- 
notarized item. For example, malware is often either wholly unsigned or 
signed in an ad hoc manner, meaning with a self-signed or untrusted cer-
ti!cate. While threat actors may occasionally sign their malware with fraud-
ulently obtained or stolen developer certi!cates, it’s rare for Apple to have 
notarized the malware as well. Moreover, Apple is often quick to revoke the 
signing certi!cate or notarization ticket when it makes a mistake.

You can !nd the majority of code snippets presented in this chapter in 
the checkSignature project, available in the book’s GitHub repository. 

The Importance of Code Signing in Malware Detection
As an example of why code signing is useful for malware detection, imagine 
that you develop a heuristic to monitor the !lesystem for persistent items (a 
reasonable approach to detecting malware, as the vast majority of Mac mal-
ware will persist on an infected host). Say your heuristic triggers when the 
com.microsoft.update.agent.plist property list is persisted as a launch agent. This 
property list references an application named MicrosoftAutoUpdate.app, which 
the operating system will now start automatically each time the user logs in.

If your detection capabilities don’t take into account the code signing 
information of the persisted item, you might generate an alert for what is 
 actually a totally benign persistence event. The question, therefore, becomes: 
Is this really a Microsoft updater, or is it malware masquerading as such? 
By checking the application’s code signing signature, you should be able to 
answer this question conclusively; if Microsoft has indeed signed the item, 
you can ignore the persistence event, but if not, the item warrants a much 
closer look.

Unfortunately, existing malware detection products may fail to ade-
quately take code signing information into account. For example, consider 
Apple’s Malware Removal Tool (MRT), a built-in malware detection tool 
found in certain versions of macOS. This platform binary is, of course, 
signed by Apple proper. Yet many antivirus engines have, at one point or 
another, "agged an MRT binary, com.apple.XProtectFramework.plugins.MRTv3, 
as malicious because their antivirus signatures naively matched MRT’s own 
embedded viral signatures (Figure#3-1).

Figure 3-1: Apple’s Malicious Removal Tool flagged as malicious
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A rather hilarious false positive indeed. Joking aside, products that 
incorrectly classify legitimate items as malware may alert the user, causing 
consternation, or worse, may break legitimate functionality by quarantin-
ing the item. While third-party security products luckily can’t delete system 
components such as MRT, Apple has been known to inadvertently block its 
own components, disrupting system operations.1 In both cases, the detec-
tion logic could have simply checked the item’s code signing information to 
see that it belonged to a trusted source.

Code signing information can do more than just reduce false positives. 
For example, security tools should allow trusted or user-approved items to 
perform actions that might otherwise trigger an alert. Consider the case 
of a simple !rewall that generates a noti!cation whenever an untrusted 
item attempts to access the network. To distinguish between trusted and 
untrusted items, the !rewall can check the items’ code signing signatures. 
Creating !rewall rules based on code signing information has a few bene!ts:

• If malware attempts to bypass the !rewall by modifying a legitimate 
item, code signing checks will detect this tampering.

• If an approved item moves to another location on the !lesystem, the 
rule will still match, as it isn’t tied to the item’s path or speci!c location.

Hopefully, these brief examples have already shown you the value of 
inspecting the code signing information. For good measure, let’s list a few 
other ways that code signing information can help us programmatically 
detect malicious code:

Detecting notarization    Recent versions of macOS require all down-
loaded software to be signed in order to run. As such, most malware is 
now signed, often with an ad hoc certi!cate or fraudulent developer ID. 
However, malware is rarely notarized, because notarization requires 
submitting an item to Apple, which scans it, then issues a notarization 
ticket if the item doesn’t appear to be malicious.2 On the few occasions 
that Apple has inadvertently notarized malware, it has quickly detected 
the misstep and revoked the notarization.3 These blunders are exceed-
ingly rare, and notarized items are most likely benign. Using code sign-
ing, you can quickly determine whether an item is notarized, providing 
a reliable indication that Apple doesn’t consider it to be malware.
Detecting revocations    If Apple has revoked an item’s code signing 
certi!cate or notarization ticket, it means they have determined that 
the item should no longer be distributed and run. Although revocation  
sometimes happens for benign reasons, it’s often because Apple deemed 
the item malicious. This chapter explains how to programmatically 
detect revocations.4

Linking items to known adversaries    Code signing information that 
researchers have attributed to malicious adversaries, such as team 
identi!ers, can later identify other malware specimens created by the 
same#authors.
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When detecting malware, you’re generally interested in the following 
code signing information for an item:

• The general status of the information, signing certi!cate, and notariza-
tion ticket. Is the item fully signed and notarized, and are the signing 
certi!cate and notarization ticket still in good standing?

• The code signing authorities describing the chain of signers, as they can 
provide insight into the origin and trustworthiness of the signed item.

• The item’s optional team identi!er, which speci!es the team or com-
pany that created the signed item. If the team identi!er belongs to a 
reputable company, you can generally trust the signed item.

This chapter won’t cover code signing internals. Rather, it focuses on 
higher-level concepts, as well as the APIs used to extract code signing 
information.5

Keep in mind, however, that not everything on macOS is signed, nor is 
it signed in the same way. Most notably, developers can’t sign stand-alone 
scripts (one of the reasons Apple is desperately trying to deprecate them). 
Nor is the macOS kernel signed per se. Instead, the boot process uses a 
cryptographic hash to verify that it remains pristine.

While developers can and should sign distribution media such as disk 
images, packages, and zip archives, as well as applications and stand-alone 
binaries, the tools and APIs that extract the code signing information are 
often speci!c to the !le type. For example, Apple’s codesign utility and code 
signing services APIs work on disk images, applications, and binaries, but 
not on packages, whose information you can examine with the pkgutil util-
ity or the private PackageKit APIs.

Let’s consider how to manually and programmatically extract and vali-
date code signing information, starting with distribution media.

Disk Images
Both legitimate developers and malware authors often distribute their code 
as disk images, which have the .dmg extension. Most disk images containing 
malware are unsigned, and if you encounter an unsigned .dmg, you should 
at the very least check whether the items it contains are signed and nota-
rized. The presence of code signing information doesn’t mean a disk image 
is benign, however; nothing stops malware authors from leveraging crypto-
graphic signatures. When you encounter a signed disk image, use its code 
signing information to identify the creator.

Manually Verifying Signatures
You can manually verify the signature of a disk image with macOS’s built-in 
codesign utility. Execute it with the --verify command line option (or -v for 
short) and the path of a .dmg !le.

In the following example, codesign identi!es a validly signed disk 
image containing LuLu, legitimate software from Objective-See. When it 
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encounters validly signed images, the tool won’t output anything by default; 
hence, we use the -dvv option to display verbose output:

% codesign –-verify LuLu_2.6.0.dmg

% codesign --verify -dvv LuLu_2.6.0.dmg
Executable=/Users/Patrick/Downloads/LuLu_2.6.0.dmg
Identifier=LuLu
Format=disk image
...
Authority=Developer ID Application: Objective-See, LLC (VBG97UB4TA)
Authority=Developer ID Certification Authority
Authority=Apple Root CA

The verbose output shows information about the disk image, such as 
its path, identi!er, and format, as well as its code signing status, including 
the certi!cate authority chain. From the certi!cate authority chain, you can 
see the package has been signed with an Apple Developer ID belonging to 
Objective-See.

If a disk image isn’t signed, the utility will display a code object is not 
signed at all message. Many software items, including most of the malware 
specimens distributed via disk images, fall into this category; the authors 
may have signed the software or malware but not its distribution media. For 
example, take a look at the EvilQuest malware. Distributed via disk images, 
it contains packages of trojanized applications:

% codesign --verify "EvilQuest/Mixed In Key 8.dmg"
EvilQuest/Mixed In Key 8.dmg: code object is not signed at all

Lastly, if Apple has revoked a disk image’s signature, codesign will dis-
play CSSMERR_TP_CERT_REVOKED. You can see an example of this in the disk 
image used to distribute the CreativeUpdate malware:

% codesign --verify "CreativeUpdate/Firefox 58.0.2.dmg"
CreativeUpdate/Firefox 58.0.2.dmg: CSSMERR_TP_CERT_REVOKED

The malware’s signature is no longer valid.

Extracting Code Signing Information
Let’s programmatically extract and verify the code signing information of 
a disk image using Apple’s code signing services (Sec*) APIs.6 In the chap-
ter’s checkSignature project, you’ll !nd a function named checkItem that takes 
the path to an item to verify, such as a disk image, and returns a dictionary 
containing the results of the veri!cation. For validly signed items, it also 
returns information such as the code signing authorities, if any.

For the sake of brevity, I’ve omitted basic sanity and error checks from 
most of the code snippets in this book. However, when it comes to code sign-
ing, which provides the means to make crucial decisions about the trustwor-
thiness of items, it’s imperative that the code handle errors appropriately. 
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Without resilient error-handling mechanisms, the code might inadvertently 
trust a malicious item masquerading as something benign! Thus, in this 
chapter, the code snippets don’t omit such important error checks.

The !rst step to extracting the code signing information of any item is to 
obtain what is referred to as a code object reference that you can then pass to 
all subsequent code signing API calls. For on-disk items such as disk images, 
you’ll obtain a static code object of type SecStaticCodeRef.7 For running pro-
cesses, you’ll instead obtain a dynamic code object of type SecCodeRef.8

To obtain a static code reference from a disk image, invoke the 
SecStaticCodeCreateWithPath API with a path to the speci!ed disk image, 
optional "ags, and an out pointer. Once the function returns, this out 
pointer will contain a SecStaticCode object for use in subsequent API calls 
(Listing 3-1).9 Note that you should free this pointer using CFRelease once 
you’re done with it.

NSMutableDictionary* checkImage(NSString* item) {
    SecStaticCodeRef codeRef = NULL;
    NSMutableDictionary* signingInfo = [NSMutableDictionary dictionary];

  1 CFURLRef itemURL = (__bridge CFURLRef)([NSURL fileURLWithPath:item]);

  2 OSStatus status = SecStaticCodeCreateWithPath(itemURL, kSecCSDefaultFlags, &codeRef);
  3 if(errSecSuccess != status) {
        goto bail;
    }
    ...

bail:
    if(nil != codeRef) {
        CFRelease(codeRef);
    }
    return signingInfo;
}

Listing 3-1: Obtaining a static code object for a disk image

After initializing a URL object containing the path of the disk image 
we’re to check 1, we invoke the SecStaticCodeCreateWithPath API 2. If this 
function fails, it will return a nonzero value 3. If Sec* APIs succeed, they 
return zero, which maps to the preferred errSecSuccess constant. I discuss 
the error codes that the Sec* APIs may return in “Code Signing Error 
Codes” on page 97. They’re also detailed in Apple’s “Code Signing Services 
Result Codes” documentation.10 Also note that when we are done with the 
code reference, we must release it via CFRelease.

In this and subsequent code snippets, you’ll see the use of bridging, 
a mechanism to cast Objective-C objects in a toll-free manner into (and 
out of) the Core Foundation objects used by Apple’s code signing APIs. 
For example, in Listing 3-1, the SecStaticCodeCreateWithPath API expects a 
CFURLRef as its !rst argument. After converting the path of the disk image to 
an NSURL object, we bridge it to a CFURLRef using (__bridge CFURLRef). You can 
read more about bridging in Apple’s “Core Foundation Design Concepts.”11
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Once we’ve created a static code object for the disk image, we can 
invoke the SecStaticCodeCheckValidity API with the just-created SecStaticCode 
object to check its validity, saving the result of the call so we can return it to 
the caller (Listing 3-2).

...
#define KEY_SIGNATURE_STATUS @"signatureStatus"

status = SecStaticCodeCheckValidity(codeRef, kSecCSEnforceRevocationChecks, NULL);
signingInfo[KEY_SIGNATURE_STATUS] = [NSNumber numberWithInt:status];
if(errSecSuccess != status) {
    goto bail;
}

Listing 3-2: Checking a disk image’s code signing validity

You’ll normally see this API invoked with the kSecCSDefaultFlags con-
stant, which contains a default set of "ags, but to perform certi!cate revo-
cation checks as part of the validation, you need to pass in kSecCSEnforce 
RevocationChecks.

Next, we check that the invocation succeeded. If we fail to perform 
this#validation, malicious code may be able to subvert code signing checks.12 
If the API fails, for example, with errSecCSUnsigned, you’ll likely want to abort 
the extraction of any further code signing information, which either won’t 
be present (in the case of unsigned items) or won’t be trustworthy.

Once we’ve determined the validity of the disk image’s code signing  
status, we can extract its code signing information via the SecCodeCopy 
Signing Information API. We pass this API the SecStaticCode object, the kSecCS 
Signing Information "ag, and an out pointer to a dictionary to populate with 
the disk#image’s code signing details (Listing 3-3).

CFDictionaryRef signingDetails = NULL;

status = SecCodeCopySigningInformation(codeRef,
kSecCSSigningInformation, &signingDetails);
if(errSecSuccess != status) {
    goto bail;
}

Listing 3-3: Extracting code signing information

Now we can extract stored details from the dictionary, such as the cer-
ti!cate authority chain, using the key kSecCodeInfoCertificates (Listing 3-4).

#define KEY_SIGNING_AUTHORITIES @"signatureAuthorities"

signingInfo[KEY_SIGNING_AUTHORITIES] = ((__bridge NSDictionary*)signingDetails)
[(__bridge NSString*)kSecCodeInfoCertificates];

Listing 3-4: Extracting the certificate authority chain
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If the item has an ad hoc signature, it won’t have an entry under the 
kSec Code InfoCertificates key in its code signing dictionary. Another way 
to identify ad hoc signatures is to check the kSecCodeInfoFlags key, which 
contains the item’s code signing "ags. For ad hoc signatures, we’ll !nd the 
second least signi!cant bit (2) set in the "ag, which, after consulting Apple’s 
cs_blobs.h header !le, we see maps to the constant CS_ADHOC.

It’s rare to see disk images signed in an ad hoc manner, as they don’t 
require a signature to begin with, but because apps and binaries must be 
signed to run, you’ll commonly see malware signed in this way. We can 
extract the code signing "ags in the manner shown in Listing 3-5.

#define KEY_SIGNING_FLAGS @"flags"

signingInfo[KEY_SIGNING_FLAGS] = [(__bridge NSDictionary*)signingDetails
objectForKey:(__bridge NSString*)kSecCodeInfoFlags];

Listing 3-5: Extracting an item’s code signing flags

We could then check these extracted "ags for the value indicating an 
ad hoc signature (Listing 3-6).

if([results[KEY_SIGNING_FLAGS] intValue] & CS_ADHOC) {
    // Code here will run only if item is signed in an ad hoc manner.
}

Listing 3-6: Verifying code signing flags

The dictionary stores these "ags in a number object, so we must !rst 
convert them to an integer and then perform a bitwise AND operation (&) 
to check for the bits speci!ed by CS_ADHOC.

When we’re !nished with the CFDictionaryRef dictionary, we must free it 
via CFRelease.

Extracting Notarization Information
To extract the notarization status of the disk images, we can use the 
SecRequirementCreateWithString API, which lets us create a requirement to 
which an item must conform. In Listing 3-7, we create a requirement with 
the string "notarized".

static SecRequirementRef requirement = NULL;
SecRequirementCreateWithString(CFSTR("notarized"), kSecCSDefaultFlags, &requirement);

Listing 3-7: Initializing a requirement reference string

The API generates an object by compiling the code requirement string 
we pass to it, allowing us to use the requirement multiple times.13 If you’re 
performing a one-time requirement check, you can skip the compilation 
step and instead use the SecTaskValidateForRequirement API, which takes a 
string-based requirement to validate as a second argument.

Now we can call the SecStaticCodeCheckValidity API, passing it the 
SecStaticCode object, as well as the requirement reference (Listing 3-8).
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if(errSecSuccess == SecStaticCodeCheckValidity(codeRef, kSecCSDefaultFlags, requirement)) {
    // Code placed here will run only if the item is notarized.
}

Listing 3-8: Checking a notarization requirement

If the API returns errSecSuccess, we know that the item conforms to 
the requirement we passed in. In our case, this means the disk image is 
indeed notarized. You can read more about requirements, including useful 
requirement strings, in Apple’s informative “Code Signing Requirement 
Language” document.14

If the notarization validation fails, we should check whether Apple has 
revoked the item’s notarization ticket, even if the item is validly signed. This 
nuanced case presents a huge red "ag; for an example, see the discussion of 
the 3CX supply chain attack in “On-Disk Applications and Executables” on 
page 93.

Although I’ve asked for one,15 Apple has not approved any method 
of determining whether an item’s notarization ticket has been revoked. 
However, two undocumented APIs, SecAssessmentCreate and SecAssessment Ticket 
Lookup, can provide this information. In Listing 3-9, we invoke SecAssessment 
Create to check whether an item that has passed other code signing checks 
has had its notarization ticket revoked.

1 SecAssessmentRef secAssessment = SecAssessmentCreate(itemURL,
kSecAssessmentDefaultFlags, (__bridge CFDictionaryRef)(@{}), &error);
2 if(NULL == secAssessment) {
    if( (CSSMERR_TP_CERT_REVOKED == CFErrorGetCode(error)) ||
        (errSecCSRevokedNotarization == CFErrorGetCode(error)) ) {
        signingInfo[KEY_SIGNING_NOTARIZED] =
        [NSNumber numberWithInteger:errSecCSRevokedNotarization];
    }
}
3 if(NULL != secAssessment) {
    CFRelease(secAssessment);
}

Listing 3-9: Checking whether a notarization ticket has been revoked

We pass the function the path to the item, such as a disk image; the 
default assessment "ags; an empty but non-NULL dictionary; and an out 
pointer to an error variable 1.

If Apple has revoked either the notarization ticket or the certi!cate, 
the function will set an error to CSSMERR_TP_CERT_REVOKED or errSecCSRevoked 
Notarization. The name of the !rst error is a bit nuanced, as it can return 
items with valid certi!cates but revoked notarization tickets, which is what 
we’re interested in here.

If we receive a NULL assessment and either of these error codes 2, we 
know something has been revoked. Moreover, because we’ve already vali-
dated the code signing certi!cates, we know that the revocation refers to 
the notarization ticket. Once we’re done with the assessment, we make sure 
to free it if it’s not NULL 3.
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Running the Tool
Let’s compile the checkSignature project and run it against the disk images 
mentioned earlier in this section:

% ./checkSignature LuLu_2.6.0.dmg
Checking: LuLu_2.6.0.dmg
Status: signed
Is notarized: no

Signing auths: (
    "<cert(0x11100a800) s: Developer ID Application: Objective-See, LLC (VBG97UB4TA)
    i: Developer ID Certification Authority>",
    "<cert(0x111808200) s: Developer ID Certification Authority i: Apple Root CA>",
    "<cert(0x111808a00) s: Apple Root CA i: Apple Root CA>"
)

As expected, the code reports that LuLu’s disk image is signed, though 
it isn’t notarized. The code also extracts the chain of its code signing 
authorities, which include its developer ID application and its developer ID 
certi!cation authority. (When detecting malware, you may want to ignore 
disk images signed via trusted developer IDs unless you’re interested in 
detecting supply chain attacks.)

Now let’s run the code against the EvilQuest malware. As you’ll see, the 
code matches the results from Apple’s codesign utility, indicating that the 
disk image is unsigned:

% ./checkSignature "EvilQuest/Mixed In Key 8.dmg"
Checking: Mixed In Key 8.dmg
Status: unsigned

Finally, we run the code against the CreativeUpdate malware, whose 
code signing certi!cate has been revoked:

% ./checkSignature "CreativeUpdate/Firefox 58.0.2.dmg"
Checking: Firefox 58.0.2.dmg
Status: revoked

Now that we can programmatically extract and validate code signing 
information from disk images, let’s do the same for packages, which unfor-
tunately require a completely different approach.

Packages
You can manually verify the signature of a package (.pkg) with the built-in 
pkgutil utility. Execute it with the --check-signature command line option, 
followed by the path of the .pkg !le you’d like to verify. The utility should 
display the result of the check in a line pre!xed with Status:
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% pkgutil --check-signature GoogleChrome.pkg
Package "GoogleChrome.pkg":
   Status: signed by a developer certificate issued by Apple for distribution
   Notarization: trusted by the Apple notary service
   Signed with a trusted timestamp on: 05-15 20:46:50 +0000
   Certificate Chain:
    1. Developer ID Installer: Google LLC (EQHXZ8M8AV)
       Expires: 2027-02-01 22:12:15 +0000
       SHA256 Fingerprint:
           40 02 6A 12 12 38 F4 E0 3F 7B CE 86 FA 5A 22 2B DA 7A 3A 20 70 FF
           28 0D 86 AA 4E 02 56 C5 B2 B4
       -----------------------------------------------------------------------
    2. Developer ID Certification Authority
       Expires: 2027-02-01 22:12:15 +0000
       SHA256 Fingerprint:
           7A FC 9D 01 A6 2F 03 A2 DE 96 37 93 6D 4A FE 68 09 0D 2D E1 8D 03
           F2 9C 88 CF B0 B1 BA 63 58 7F
       -----------------------------------------------------------------------
    3. Apple Root CA
       Expires: 2035-02-09 21:40:36 +0000
       SHA256 Fingerprint:
           B0 B1 73 0E CB C7 FF 45 05 14 2C 49 F1 29 5E 6E DA 6B CA ED 7E 2C
           68 C5 BE 91 B5 A1 10 01 F0 24

The results show that pkgutil has veri!ed that the package, a Google 
Chrome installer, is signed and notarized. The tool also displayed the cer-
ti!cate authority chain, which indicates that the package was signed via an 
Apple Developer ID belonging to Google.

Note that you can’t use the codesign utility to check the code signature 
of packages, as .pkg !les use a different mechanism for storing code sign-
ing information that codesign doesn’t understand. For example, when run 
against the same package, it detects no signature:

% codesign –-verify -dvv GoogleChrome.pkg
GoogleChrome.pkg: code object is not signed at all

If a package isn’t signed, pkgutil will display a Status: no signature mes-
sage. Most malware distributed via packages, including EvilQuest, falls into 
this category. These disk images contain a malicious package, and once 
the disk image is mounted, we can use pkgutil to show that this package 
is#unsigned:

% pkgutil --check-signature "EvilQuest/Mixed In Key 8.pkg"
Package "Mixed In Key 8.pkg":
   Status: no signature

Finally, if a package was signed but Apple has revoked its code signing 
certi!cate, pkgutil will display Status: revoked signature but will still show 
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the certi!cate chain. We !nd an example of this behavior in a package used 
to distribute the KeySteal malware:

% pkgutil --check-signature KeySteal/archive.pkg
Package "archive.pkg":
   Status: revoked signature
   Signed with a trusted timestamp on: 10-18 12:58:45 +0000
   Certificate Chain:
    1. Developer ID Installer: fenghua he (32W7BZNTSV)
       Expires: 2027-02-01 22:12:15 +0000
       SHA256 Fingerprint:
           EC 7C 85 1D B0 A0 8C ED 45 31 6B 8E 9D 7D 34 0F 45 B8 4E CE 9D 9C
           97 DB 2F 63 57 C2 D9 71 0C 4E
       -----------------------------------------------------------------------
    2. Developer ID Certification Authority
       Expires: 2027-02-01 22:12:15 +0000
       SHA256 Fingerprint:
           7A FC 9D 01 A6 2F 03 A2 DE 96 37 93 6D 4A FE 68 09 0D 2D E1 8D 03
           F2 9C 88 CF B0 B1 BA 63 58 7F
       -----------------------------------------------------------------------
    3. Apple Root CA
       Expires: 2035-02-09 21:40:36 +0000
       SHA256 Fingerprint:
           B0 B1 73 0E CB C7 FF 45 05 14 2C 49 F1 29 5E 6E DA 6B CA ED 7E 2C
           68 C5 BE 91 B5 A1 10 01 F0 24

Apple has revoked the signature. In addition, the revoked code signing 
identi!er, fenghua he (32W7BZNTSV), may help you !nd other malware 
signed by the same malware author.

Reverse Engineering pkgutil
Now, you may be wondering how to programmatically check the signatures 
of packages. This is a good question, as there are currently no public APIs 
for verifying a package! Thanks, Cupertino.

Luckily, a quick reverse engineering session of the pkgutil binary reveals 
exactly how it checks the signature of packages. To begin, we can see that 
pkgutil is linked against the private PackageKit framework:

% otool -L /usr/sbin/pkgutil
/usr/sbin/pkgutil:
...
/System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/PackageKit
...

The name of this framework suggests that it likely contains relevant APIs. 
Traditionally found in the /System/Library/PrivateFrameworks/ directory, the 
framework lives in the shared dyld cache, a prelinked shared !le containing 
commonly used libraries, on recent versions of macOS.16 Its name and 
location depend on the version of macOS and the architecture of the system 
but might look something like dyld_shared_cache_arm64e and /System/Volumes/
Preboot/Cryptexes/OS/System/Library/dyld/, respectively.
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We must extract the PackageKit framework from the dyld cache before 
we can reverse engineer it. A tool such as Hopper, shown in Figure#3-2, can 
extract frameworks from the cache.

Figure 3-2: Extracting the PackageKit framework from the dyld cache

If you prefer to use a command line tool to extract libraries, one good 
option is the dyld-shared-cache-extractor.17 After installing this tool, you can 
execute it with the path of the dyld cache and an output directory, which we 
specify here as /tmp/libraries:

% dyld-shared-cache-extractor /System/Volumes/Preboot/Cryptexes/OS/System/
Library/dyld/dyld_shared_cache_arm64e /tmp/libraries

Once the tool has extracted all of the libraries from the cache, you’ll 
!nd the PackageKit framework at /tmp/libraries/System/Library/Private 
Frameworks/PackageKit.framework.

Now we can load the framework into a disassembler to gain insight into its 
APIs and internals. For example, we !nd a class named PKArchive that contains 
useful methods, such as archiveWithPath: and verifyReturningError:, among 
others:

@interface PKArchive : NSObject
    +(id)archiveWithPath:(id)arg1;
    +(id)_allArchiveClasses;
    -(BOOL)closeArchive;
    -(BOOL)fileExistsAtPath:(id)arg1;
    -(BOOL)verifyReturningError:(id*)arg1;
    ...
@end
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I won’t cover the full details of reverse engineering the PackageKit frame-
work here, but you can learn more about the process online.18 You can also 
!nd the entirety of my package veri!cation source code in my What’s Your 
Sign utility’s Package.h/Package.m !le.19

Accessing Framework Functions
To use the methods we’ve discovered in our checkSignature project, we’ll need 
a header !le containing the private class de!nitions from the PackageKit 
framework. This will allow us to invoke them directly from our code. In the 
past, tools such as class-dump could easily create such header !les,20 but this 
approach isn’t fully compatible with newer Apple Silicon binaries. Instead, 
you can manually extract these class de!nitions from a disassembler or by 
using otool. Listing 3-10 shows the extracted de!nitions.

@interface PKArchive : NSObject
    +(id)archiveWithPath:(id)arg1;
    +(id)_allArchiveClasses;
    -(BOOL)closeArchive;
    -(BOOL)fileExistsAtPath:(id)arg1;
    -(BOOL)verifyReturningError:(id*)arg1;
    ...

    @property(readonly) NSString* archiveDigest;
    @property(readonly) NSString* archivePath;
    @property(readonly) NSDate* archiveSignatureDate;
    @property(readonly) NSArray* archiveSignatures;
@end

@interface PKArchiveSignature : NSObject
{
    struct __SecTrust* _verifyTrustRef;
}

    -(struct __SecTrust*)verificationTrustRef;
    -(BOOL)verifySignedDataReturningError:(id *)arg1;
    -(BOOL)verifySignedData;
    ...

    @property(readonly) NSString* algorithmType;
    @property(readonly) NSArray* certificateRefs;
@end
...

Listing 3-10: The PackageKit framework’s extracted class and method definitions

Now we can write code to use these classes, invoking their methods to 
programmatically verify packages of our choosing. We’ll do this in a function 
we name checkPackage. As its only argument, it takes a path to the package to 
verify and returns a dictionary containing the results of veri!cation, plus other 
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code signing information, such as the package’s code signing authorities. The 
function starts by loading the required PackageKit framework (Listing 3-11).

#define PACKAGE_KIT @"/System/Library/PrivateFrameworks/PackageKit.framework" 1

NSMutableDictionary* checkPackage(NSString* package) {
    NSBundle* packageKit = [NSBundle bundleWithPath:PACKAGE_KIT]; 2
    [packageKit load];
    ...
}

Listing 3-11: Loading the PackageKit framework

First, we de!ne the path to the PackageKit framework 1. We then load 
the framework with the NSBundle class’s bundleWithPath: and load methods so 
that we can dynamically resolve and invoke the framework’s methods 2.

Due to its introspective nature, the Objective-C programming language 
makes it easy to use private classes and invoke private methods. To access a 
private class, use the NSClassFromString function. For example, Listing 3-12 
shows how to dynamically obtain the class object for the PKArchive class.

Class PKArchiveCls = NSClassFromString(@"PKArchive");

Listing 3-12: Obtaining the PKArchive class object

Reverse engineering pkgutil revealed that it instantiates an archive object 
(PKXARArchive) using the PKArchive class’s archiveWithPath: method, along with 
the path of the package to validate. In Listing 3-13, our code does the same.

PKXARArchive* archive = [PKArchiveCls archiveWithPath:package];

Listing 3-13: Instantiating an archive object

When dealing with private classes such as the PKArchive class, note that it’s  
wise to invoke the respondsToSelector: method before invoking its methods. 
The respondsToSelector: method will return a Boolean value that tells you 
whether you can safely invoke the method on the class or class instance.21 
If you skip this step and an object doesn’t respond to a method, it will crash 
your program with an unrecognized selector sent to class exception.

The following code checks to make sure the PKArchive class implements 
the archiveWithPath: method (Listing 3-14).

if(YES != [PKArchiveCls respondsToSelector:@selector(archiveWithPath:)]) {
    goto bail;
}

Listing 3-14: Checking for a method

Now we’re ready to perform some basic package validation.
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Validating the Package
Again, we mimic pkgutil by using the PKXARArchive class’s verifyReturningError: 
method (Listing 3-15).

NSError* error = nil;
if(YES != [archive verifyReturningError:&error]) {
    goto bail;
}

Listing 3-15: Performing basic package validation

Once the package has passed basic veri!cation checks, we can check its  
signature, which we !nd in the archive’s archiveSignatures instance variable. 
This variable is an array holding pointers to PKArchiveSignature objects. 
A#signed package will have at least one signature (Listing 3-16).

1 NSArray* signatures = archive.archiveSignatures;
if(0 == signatures .count) {
    goto bail;
}

PKArchiveSignature* signature = signatures.firstObject;
2 if(YES != [signature verifySignedDataReturningError:&error]) {
    goto bail;
}

Listing 3-16: Verifying a package’s leaf signature

After ensuring that the package has at least one signature 1, we verify 
the !rst, or leaf, signature, using the PKArchiveSignature class’s verifySigned 
DataReturningError: method 2. Additionally, we evaluate the trust of this 
 signature (Listing 3-17).

Class PKTrustCls = NSClassFromString(@"PKTrust");

struct __SecTrust* trustRef = [signature verificationTrustRef];

1 PKTrust* pkTrust = [[PKTrustCls alloc] initWithSecTrust:trustRef
usingAppleRoot:YES signatureDate:archive.archiveSignatureDate];

2 if(YES != [pkTrust evaluateTrustReturningError:&error]) {
    goto bail;
}

Listing 3-17: Evaluating the trust of a signature

We instantiate a PKTrust object with the signature 1 and then invoke 
the PKTrust class’s evaluateTrustReturningError: method 2. If verification 
TrustRef returns nil, we can validate the package via certi!cates by using the 
PKTrust class’s initWithCertificates:usingAppleRoot:signatureDate: method. See 
this chapter’s checkSignature project code for more details. If the signature 
and signature trust veri!cations pass, we have a validly signed package.
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You could also extract the signature’s certi!cates, which would allow 
you to perform actions like checking the name of each signing authority. 
You can access these certi!cates through the PKArchiveSignature object’s 
certificateRefs instance variable, which is an array of SecCertificateRef 
objects, and extract their information with the SecCertificate* APIs.

Checking Package Notarization
I’ll wrap up this section by showing how to determine whether Apple has 
notarized a package. Recall that pkgutil leverages the private PackageKit 
framework to validate packages. However, reverse engineering revealed that 
the package notarization checks aren’t implemented in that framework with 
the rest of the checks, but rather directly in the pkgutil binary.

To check the notarization status of a package, pkgutil invokes the 
SecAssessmentTicketLookup API. Though this API is undocumented, we !nd 
its declaration in Apple’s SecAssessment.h header !le. Listing 3-18 mimics 
pkgutil’s approach. Given a validated PKArchiveSignature object from a pack-
age, it determines whether the package has been notarized.

#import <CommonCrypto/CommonDigest.h>

typedef uint64_t SecAssessmentTicketFlags;
enum {
    kSecAssessmentTicketFlagDefault = 0,
    kSecAssessmentTicketFlagForceOnlineCheck = 1 << 0,
    kSecAssessmentTicketFlagLegacyListCheck = 1 << 1,
};

Boolean SecAssessmentTicketLookup(CFDataRef hash, SecCSDigestAlgorithm
hashType, SecAssessmentTicketFlags flags, double* date, CFErrorRef* errors);

BOOL isPackageNotarized(PKArchiveSignature* signature) {
    CFErrorRef error = NULL;
    BOOL isItemNotarized = NO;
    double notarizationDate = 0;

    SecCSDigestAlgorithm hashType = kSecCodeSignatureHashSHA1;

  1 NSData* hash = [signature signedDataReturningAlgorithm:0x0];
    if(CC_SHA1_DIGEST_LENGTH == hash.length) {
        hashType = kSecCodeSignatureHashSHA1;
    } else if(CC_SHA256_DIGEST_LENGTH == hash.length) {
        hashType = kSecCodeSignatureHashSHA256;
    }

  2 if(YES == SecAssessmentTicketLookup((__bridge CFDataRef)(hash), hashType,
    kSecAssessmentTicketFlagDefault, &notarizationDate, &error)) {
        isItemNotarized = YES;
  3 } else if(YES == SecAssessmentTicketLookup((__bridge CFDataRef)(hash),
    hashType, kSecAssessmentTicketFlagForceOnlineCheck, &notarizationDate,
    &error)) {
        isItemNotarized = YES;
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    }

    return isItemNotarized;
}

Listing 3-18: A package notarization check

We declare various variables, most of which we’ll need for the 
SecAssessment TicketLookup API call. We then invoke the signature’s signed 
DataReturningAlgorithm: method, which returns a data object containing a 
hash#1.

Next, we make the !rst call to SecAssessmentTicketLookup 2, passing it the 
hash and hash type, which will be either SHA-1 or SHA-256, represented 
by the kSecCodeSignatureHashSHA1 and kSecCodeSignatureHashSHA256 constants, 
respectively. We also pass in the assessment "ags and an out pointer that 
will receive the date of the notarization if the package is notarized. The last 
argument is an optional out pointer to an error variable.

Mimicking the pkgutil binary, we !rst invoke the API with the assess-
ment "ags set to kSecAssessmentTicketFlagDefault. If this call fails to deter-
mine whether the package is notarized, we invoke the API again, this time 
with the "ag set to kSecAssessmentTicketFlagForceOnlineCheck 3. You can !nd 
these and other "ag values in the SecAssessment.h header !le.

If either API invocation returns a nonzero value, the package is nota-
rized, and the Apple notary service trusts it. Because we mimicked pkgutil, 
however, our code doesn’t specify whether a non-notarized package has 
had its notarization ticket revoked. Given an item’s code signing hash 
and hash type, we could implement such a check in the manner shown in 
Listing#3-19.

CFErrorRef error = NULL;

if(YES != SecAssessmentTicketLookup(hash, hashType,
kSecAssessmentTicketFlagForceOnlineCheck, NULL, &error)) {
    if(EACCES == CFErrorGetCode(error)) {
        // Code placed here will run if the item's notarization ticket has been revoked.
    }
}

Listing 3-19: Checking for revoked notarization tickets

The SecAssessmentTicketLookup API will set its error variable to the value 
EACCES if the item’s notarization ticket has been revoked.22

Running the Tool
Let’s run the checkSignature tool against the packages mentioned earlier in 
this chapter:

% ./checkSignature GoogleChrome.pkg
Checking: GoogleChrome.pkg
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Status: signed
Notarized: yes
Signing authorities (
    "<cert(0x11ee0ac30) s: Developer ID Installer: Google LLC (EQHXZ8M8AV)
    i: Developer ID Certification Authority>",
    "<cert(0x11ee08360) s: Developer ID Certification Authority i: Apple Root CA>",
    "<cert(0x11ee07820) s: Apple Root CA i: Apple Root CA>"
)

% ./checkSignature "EvilQuest/Mixed In Key 8.pkg"
Checking: Mixed In Key 8.pkg

Status: unsigned

% ./checkSignature KeySteal/archive.pkg
Checking: archive.pkg

Status: certificate revoked

Signing authorities: (
    "<cert(0x151406100) s: Developer ID Installer: fenghua he (32W7BZNTSV)
    i: Developer ID Certification Authority>",
    "<cert(0x151406380) s: Developer ID Certification Authority i: Apple Root CA>",
    "<cert(0x1514082b0) s: Apple Root CA i: Apple Root CA>"
)

The output matches the results of Apple’s pkgutil. Our code accurately 
identi!es the !rst package as validly signed and notarized; the second, con-
taining the EvilQuest malware, as unsigned; and the last, containing the 
KeySteal malware, as revoked.

On-Disk Applications and Executables
The majority of macOS malware is distributed as applications or stand-
alone Mach-O binaries. We can extract code signing information from 
an on-disk application bundle or executable binary in the same manner as 
for disk images: manually, via the codesign utility, or programmatically, 
via Apple’s Code Signing Services APIs. However, this case presents a few 
important differences.

The !rst involves the SecStaticCodeCheckValidity API, which validates the 
item’s signature. When the item isn’t a disk image, we must invoke this func-
tion with the kSecCSCheckAllArchitectures "ag (Listing 3-20).

SecCSFlags flags = kSecCSEnforceRevocationChecks;
if(NSOrderedSame != [item.pathExtension caseInsensitiveCompare:@"dmg"]) {
    flags |= kSecCSCheckAllArchitectures;
}
status = SecStaticCodeCheckValidity(staticCode, flags, NULL);
...

Listing 3-20: Checking an item’s signature
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This "ag handles multiarchitecture items like universal binaries, which 
can include several embedded Mach-O binaries, potentially with different 
code signers. For a real-world example in which attackers abused a universal 
binary to bypass insuf!cient code signing checks, see CVE-2021-30773.23 
This "ag value also enforces revocation checks, as it contains the value 
kSecCSEnforceRevocationChecks.

Earlier in this chapter, I showed you how to check whether a speci!ed 
item conforms to some requirement, such as notarization. You might want 
to check additional requirements, such as whether Apple proper signed the 
item (the anchor apple requirement) or whether both Apple and a third-party 
developer ID have signed it (the anchor apple generic requirement). In each 
of these cases, your code can invoke the SecRequirementCreateWithString 
function with the requirement you wish to check and then pass this 
requirement to the SecStaticCodeCheckValidity API. To take into account 
universal binaries, invoke this function with a "ag value that contains 
kSecCSCheckAllArchitectures.

You should also invoke the SecAssessmentCreate API to account for items 
with valid signatures but revoked notarization tickets. For a real-world 
example of this situation pertaining to applications, consider the 3CX  supply 
chain attack mentioned previously. In this attack, North Korean attackers 
compromised the 3CX company network and build server, subverted the 3CX 
application with malware, signed it with the 3CX code signing certi!cate, and 
then tricked Apple into notarizing it. Not wanting to revoke 3CX’s code sign-
ing certi!cate, which would have blocked many other legitimate 3CX apps, 
Apple merely revoked the subverted application’s notarized ticket.

Let’s run the checkSignature project on legitimate applications as well as 
malware, including the 3CX sample:

% ./checkSignature /Applications/LuLu.app
Checking: LuLu.app

Status: signed
Notarized: yes
Signing authorities: : (
    "<cert(0x13b814800) s: Developer ID Application: Objective-See, LLC (VBG97UB4TA)
    i: Developer ID Certification Authority>",
    "<cert(0x13b81c800) s: Developer ID Certification Authority i: Apple Root CA>",
    "<cert(0x13b81d000) s: Apple Root CA i: Apple Root CA>"
)

% ./checkSignature WindTail/Final_Presentation.app
Checking: Final_Presentation.app

Status: certificate revoked

% ./checkSignature "SmoothOperator/3CX Desktop App.app"
Checking: 3CX Desktop App.app
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Status: signed
Notarized: revoked

% ./checkSignature MacMa/client
Checking: client

Status: unsigned

We !rst check Objective-See’s signed and notarized LuLu application, 
followed by a WindTail malware specimen with a revoked certi!cate. Next, 
we test an instance of the trojanized 3CX application; our code correctly 
detects its revoked notarization status. Finally, we demonstrate that the 
MacMa malware is unsigned.

Running Processes
So far, we’ve examined on-disk items by obtaining static code object refer-
ences. In this section, we’ll check the code signing information of running 
processes by using dynamic code object references (SecCodeRef).

When applicable, you should make use of dynamic code object references 
for two reasons. The !rst is ef!ciency; the operating system will have already 
validated much of the code signing information for a dynamic instance of an 
item of interest to ensure conformance with runtime requirements. For us, 
this means we can avoid the costly !le I/O operations associated with static 
code checks and skip certain computations.

The other reason that dynamic code references are preferable to static 
code references relates to possible discrepancies between an item’s on-disk 
image and its in-memory one. For example, there is little stopping malware 
from changing the code signing information of its on-disk item to a benign 
value. (Of course, this highly anomalous behavior should itself raise a huge 
red "ag.) On the other hand, a running item can’t change its dynamic code 
signing information.

To check whether a running process is signed and then extract its 
code signing information, we !rst must obtain a code reference via the 
SecCodeCopyGuestWithAttributes API. Invoke it with the process’s ID, or prefer-
ably, with a more secure process audit token (Listing 3-21).

SecCodeRef dynamicCode = NULL;

NSData* data = [NSData dataWithBytes:token length:sizeof(audit_token_t)]; 1
NSDictionary* attributes = @{(__bridge NSString*)kSecGuestAttributeAudit:data}; 2

status = SecCodeCopyGuestWithAttributes(NULL,
(__bridge CFDictionaryRef _Nullable)(attributes), kSecCSDefaultFlags, &dynamicCode); 3
if(errSecSuccess != status) {
    goto bail;
}

Listing 3-21: Obtaining a code object reference via a process’s audit token
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We !rst convert the audit token into a data object 1. We need this 
conversion so we can place the audit token in a dictionary, keyed by the 
string kSecGuestAttributeAudit 2. We then pass this dictionary to the SecCode 
CopyGuestWithAttributes API, along with an out pointer to populate with a 
code object reference 3.

With a code object reference in hand, you can validate the process’s 
code signing information with SecCodeCheckValidity or SecCode Check Validity 
WithErrors. Recall that for on-disk items such as universal binaries, we make 
use of the kSecCSCheckAllArchitectures "ag value to validate all embedded 
Mach-Os; for running processes, the dynamic loader will load and execute 
only one embedded Mach-O, so that "ag value is irrelevant and not needed.

It’s essential that you validate a process’s code signing information 
before extracting or acting upon any of it. If you don’t, or if the validation 
fails, you won’t be able to trust it. If the code signing information is valid, 
you can extract it via the SecCodeCopySigningInformation function that was 
already discussed.

With a code reference for a process, you can also perform other mun-
dane but important tasks in a simple and secure manner. For example, using 
the SecCodeCopyPath API, you can retrieve the process’s path (Listing#3-22).

CFURLRef path = NULL;
SecCodeCopyPath(dynamicCode, kSecCSDefaultFlags, &path);

Listing 3-22: Obtaining a process’s path from a dynamic code object reference

You can also perform speci!c validations using requirements, as was 
discussed for static code object references. Using dynamic code object 
references, the approach is largely the same, except you’ll make use of the 
SecCodeCheckValidity API to perform the validation. It is important to note 
that when you are done with a dynamic code reference, you should release 
it via CFRelease.

Because macOS won’t allow a process to execute if either its certi!cate 
or its notarization ticket has been revoked, you don’t need to perform this 
check yourself for running processes.

Detecting False Positives
At the beginning of the chapter, I noted that various antivirus engines had  
incorrectly "agged components of Apple’s MRT as malware. If these engines 
had taken the item’s code signing information into account, they would 
have identi!ed MRT and its components as a built-in part of macOS signed 
solely by Apple proper and safely ignored it.

I’ll show you how to perform such a check using the APIs introduced 
in this chapter. Speci!cally, you’ll make use of the anchor apple requirement 
string, which holds cryptographically true if and only if nobody but Apple 
has signed an item.
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Let’s assume we’ve obtained a static code reference to the binary 
that was incorrectly "agged as malware. In Listing 3-23, we !rst compile 
the requirement string and then pass it and the code reference to the 
SecStaticCodeCheckValidity API.

static SecRequirementRef requirement = NULL;
SecRequirementCreateWithString(CFSTR("anchor apple"), kSecCSDefaultFlags, &requirement);

if(errSecSuccess ==
SecStaticCodeCheckValidity(staticCodeRef, kSecCSCheckAllArchitectures, requirement)) {
    // Code placed here will run only if the item is signed by Apple alone.
}

Listing 3-23: Checking the validity of an item against the anchor apple requirement

If SecStaticCodeCheckValidity returns errSecSuccess, we know that only 
Apple proper has signed the item, meaning it belongs to macOS and there-
fore certainly isn’t malware.

Code Signing Error Codes
As mentioned throughout this chapter, it’s important to appropriately 
handle any errors you encounter when validating an item’s cryptographic 
signature. You can !nd the error codes for the code signing services APIs in 
Apple’s “Code Signing Services Result Codes” developer documentation24 
or in the CSCommon.h !le, found at Security.framework/Versions/A/Headers/. 
These resources indicate, for example, that the error code -66992 maps to 
errSecCSRevokedNotarization, signifying that the code has been revoked.

If perusing header !les isn’t your thing, consult the OSStatus website. 
This website provides a simple way to map any Apple API error code to its 
human-readable name.

Conclusion
Code signing allows us to determine where an item is from and whether the 
item has been modi!ed. In this chapter, you delved into code signing APIs 
that can verify, extract, and validate code signing information for items 
such as disk images, packages, on-disk binaries, and running processes.

Understanding these APIs is imperative in the context of detecting mal-
ware, especially as heuristic-based approaches can be fraught with false posi-
tives. The information provided by code signing can drastically reduce your 
detection errors. When building antimalware tools, you can use code#signing 
in a myriad of ways, including identifying core operating system components 
you can trust, detecting items whose certi!cates or notarization tickets have 
been revoked, and authenticating clients, such as tool modules attempting to 
connect to XPC interfaces (a topic covered in Chapter#11).
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